Lectures and their Durations |
Covered Topics |
Class supports* |
Own created Lecture notes |
|
L.1
Duration: 4 Hours
|
Introduction To Pattern Recognition |
|
MKB.L.1.pdf
MKB.L.1.ppt
|
L.1.1
|
Overview of patterns and its example |
CS.L.1.1.pdf
|
MKB.L.1.1.pdf
MKB.L.1.1.ppt
|
L.1.2
|
Pattern Recognition and its Application |
CS.L.1.2.pdf
|
MKB.L.1.2.pdf
MKB.L.1.2.ppt
|
L.1.3
|
Phases of Pattern Recognition (Design Cycle) |
CS.L.1.3-1.pdf
CS.L.1.3-2.pdf
|
MKB.L.1.3.pdf
MKB.L.1.3.ppt
|
L.1.4
|
Learning of machine and its types |
CS.L.1.4-1.pdf
CS.L.1.4-2.pdf
|
MKB.L.1.4.pdf
MKB.L.1.4.ppt
|
L.1.5
|
Different Approaches of Pattern Recognition |
CS.L.1.5-1.pdf
CS.L.1.5-2.pdf
CS.L.1.5-3.pdf
|
MKB.L.1.5.pdf
MKB.L.1.5.ppt
|
L.2
Duration: 14 Hours
|
Statistical Approach of Pattern Recognition |
|
MKB.L.2.pdf
MKB.L.2.ppt
|
L.2.1
|
Overview of Statistical Analysis |
CS.L.2.1.pdf |
MKB.L.2.1.pdf
MKB.L.2.1.ppt
|
L.2.2
|
Various approaches of Statistical Analysis |
|
MKB.L.2.2.pdf
MKB.L.2.2.ppt
|
L.2.2.1
|
LDA(Linear Discriminant Analysis) |
CS.L.2.2.1.pdf |
MKB.L.2.2.1.pdf
MKB.L.2.2.1.ppt
|
L.2.2.1.1
|
Introduction to LDA |
CS.L.2.2.1.1-1.pdf
CS.L.2.2.1.1-2.pdf
CS.L.2.2.1.1-3.pdf
|
MKB.L.2.2.1.1.pdf
MKB.L.2.2.1.1.ppt
|
L.2.2.1.2
|
Application of LDA |
|
MKB.L.2.2.1.2.pdf
MKB.L.2.2.1.2.ppt
|
L.2.2.1.3
|
Steps of LDA explain with examples |
|
MKB.L.2.2.1.3.pdf
MKB.L.2.2.1.3.ppt
|
L.2.2.2
|
PCA(Principal Component Analysis) |
|
MKB.L.2.2.2.pdf
MKB.L.2.2.2.ppt
|
L.2.2.2.1
|
Introduction to PCA |
CS.L.2.2.2.1.pdf |
MKB.L.2.2.2.1.pdf
MKB.L.2.2.2.1.ppt
|
L.2.2.2.2
|
Steps of PCA explain with example |
CS.L.2.2.2.2-1.pdf
CS.L.2.2.2.2-2.pdf
CS.L.2.2.2.2-3.pdf
CS.L.2.2.2.2-4.pdf
|
MKB.L.2.2.2.2.pdf
MKB.L.2.2.2.2.ppt
|
L.2.2.3
|
LDA vs PCA |
|
MKB.L.2.2.3.pdf
MKB.L.2.2.3.ppt
|
L.2.2.3
|
LDA vs PCA |
|
MKB.L.2.2.4.pdf
MKB.L.2.2.4.ppt
|
L.2.2.4
|
Pattern Classification using Statistical Approaches |
CS.L.2.2.4.pdf |
MKB.L.2.2.4.pdf
MKB.L.2.2.4.ppt
|
L.2.2.4.1
|
Nearest Neighbor Classifier |
CS.L.2.2.4.1.pdf |
MKB.L.2.2.4.1.pdf
MKB.L.2.2.4.1.ppt
|
L.2.2.4.2
|
K-Nearest Neighbor Classifier |
CS.L.2.2.4.2.pdf
|
MKB.L.2.2.4.2.pdf
MKB.L.2.2.4.2.ppt
|
L.2.2.4.3
|
Modified K-Nearest Neighbor Classifier |
CS.L.2.2.4.3.pdf |
MKB.L.2.2.4.3.pdf
MKB.L.2.2.4.3.ppt
|
L.2.2.4.4
|
Fuzzy K-Nearest Neighbor Classifier |
CS.L.2.2.4.4.pdf |
MKB.L.2.2.4.4.pdf
MKB.L.2.2.4.4.ppt
|
L.3
Duration: 6 Hours
|
Syntactic Approach of Pattern Recognition |
|
MKB.L.3.pdf
MKB.L.3.ppt
|
L.3.1
|
Overview of Syntactic Approach |
CS.L.3.1.pdf
|
MKB.L.3.1.pdf
MKB.L.3.1.ppt
|
L.3.2
|
Flowchart of Syntactic Approach |
CS.L.3.2.pdf |
MKB.L.3.2.pdf
MKB.L.3.2.ppt
|
L.3.3
|
Several Techniques in Syntactic approach |
CS.L.3.3.pdf |
MKB.L.3.3.pdf
MKB.L.3.3.ppt
|
L.3.3.1
|
Hopcroft-Karp algorithm |
CS.L.3.3.1-1.pdf
CS.L.3.3.1-2.pdf
CS.L.3.3.1-3.pdf
|
MKB.L.3.3.1.pdf
MKB.L.3.3.1.ppt
|
L.3.3.2
|
String Matching Algorithm |
CS.L.3.3.2-1.pdf
CS.L.3.3.2-2.pdf
CS.L.3.3.2-3.pdf
|
MKB.L.3.3.2.pdf
MKB.L.3.3.2.ppt
|
L.4
Duration: 8 Hours
|
Neural Network of Pattern Recognition |
|
MKB.L.4.pdf
MKB.L.4.ppt
|
L.4.1
|
Overview of Neural Network |
CS.L.4.1.pdf |
MKB.L.4.1.pdf
MKB.L.4.1.ppt
|
L.4.2
|
Inspiration from Neurobiology |
CS.L.4.2.pdf |
MKB.L.4.2.pdf
MKB.L.4.2.ppt
|
L.4.3
|
Neural Network Architectures |
CS.L.4.3.pdf |
MKB.L.4.3.pdf
MKB.L.4.3.ppt
|
L.4.3.1
|
Feed Forward Neural Network |
CS.L.4.3.1.pdf
|
MKB.L.4.3.1.pdf
MKB.L.4.3.1.ppt
|
L.4.3.2
|
Activation Functions |
CS.L.4.3.2.pdf
|
MKB.L.4.3.2.pdf
MKB.L.4.3.2.ppt
|
L.4.3.3
|
Common Activation Functions |
CS.L.4.3.3.pdf |
MKB.L.4.3.3.pdf
MKB.L.4.3.3.ppt
|
L.4.3.4
|
Applications of Feed Forward Neural Network |
CS.L.4.3.4.pdf |
MKB.L.4.3.4.pdf
MKB.L.4.3.4.ppt
|
L.4.3.5
|
Limitations of Perceptron |
|
MKB.L.4.3.5.pdf
MKB.L.4.3.5.ppt
|
L.4.3.6
|
Multi-layer Feed Forward Neural Network |
CS.L.4.3.6.pdf |
MKB.L.4.3.6.pdf
MKB.L.4.3.6.ppt
|
L.4.3.7
|
Applications of Multi-layer Feed Forward Neural Network |
|
|
L.5
Duration: 8 Hours
|
Deep Learning |
CS.L.5.pdf
|
MKB.L.5.pdf
MKB.L.5.ppt
|
L.5.1
|
History of Deep Learning and success Stories |
CS.L.5.1.pdf |
MKB.L.5.1.pdf
MKB.L.5.1.ppt
|
L.5.2
|
Introduction to Deep Learning |
CS.L.5.2.pdf |
MKB.L.5.2.pdf
MKB.L.5.2.ppt
|
L.5.3
|
Feed Forward Network |
CS.L.5.3.pdf |
MKB.L.5.3.pdf
MKB.L.5.3.ppt
|
L.5.4
|
Deep Neural Network |
CS.L.5.4.pdf
|
MKB.L.5.4.pdf
MKB.L.5.4.ppt
|
L.5.5
|
Better training of neural networks |
CS.L.5.5.pdf |
MKB.L.5.5.pdf
MKB.L.5.5.ppt
|
L.5.6
|
Recurrent Neural Network |
CS.L.5.6.pdf |
MKB.L.5.6.pdf
MKB.L.5.6.ppt
|
L.5.7
|
Convolutional Neural Network |
CS.L.5.7.pdf |
MKB.L.5.7.pdf
MKB.L.5.7.ppt
|
L.5.8
|
Generative Models |
CS.L.5.8.pdf |
MKB.L.5.8.pdf
MKB.L.5.8.ppt
|
L.5.9
|
Recent Trends |
CS.L.5.9.pdf |
MKB.L.5.9.pdf
MKB.L.5.9.ppt
|
L.5.10
|
Applications |
CS.L.5.10.pdf |
MKB.L.5.10.pdf
MKB.L.5.10.ppt
|
|