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A B S T R A C T

In arthritis, subclinical inflammation referred to the clinical condition when rheumatologists are in confusion
about the presence of inflammation using clinical and pathological observations. Application of Thermal ima-
ging in detection of subclinical inflammation is highlighted in this literature. Segmentation of the hotspot area
from the thermal image is the initial step for further analysis of the hotspot. Analysis of the hotspot will help in
prediction of the subclinical inflammation, impact of inflammation. Methodologies reported in existing literature
for segmentation of hotspot or inflamed knee region in medical thermal images suffer from over and under
extraction.

In the present scope, we try to overcome this limitation by extending the conventional region growing seg-
mentation technique with stronger similarity criteria and stopping rule. In this method, hotspot or inflamed
region is generated by taking the intersection of two independent regions produced by two different version of
Region growing algorithm using a separate set of parameters. An automatic multiseed selection procedure en-
sures prevention of missed segmentation. We validate our technique by experimentation on various thermal
image datasets like a newly created inflammatory thermal knee-joint-Database of 50 images, DBT-TU-JU
Dataset, and DMR-IR Dataset. The effectiveness of the proposed technique is established compared to the per-
formance of state-of-the-art competing methodologies.

1. Introduction

Diseases cause inflammation of joints known as arthritis. Single or
multiple joints may get affected [1] in arthritis. Pain and swelling in
joints, stiffness of joints, restriction of movements of joints are common
symptoms of arthritis [2]. Arthritis causes joint destruction which
produces inflammation in the proximity of that joint. Rheumatologist
plan the treatment for arthritis patients based on the inflammation as it
can describe the activity of related disease. Reduction in inflammation
of joints indicates the decrease in the progression of disease [3–5].
Subclinical inflammation is an important issue to be considered in the
treatment of arthritis.

Subclinical inflammation is referred to the clinical condition when
rheumatologists unable to predict the presence of inflammation [8].
Presence of Inflammation is detected by Rheumatologists using clinical
and pathological examination. Swelling, tenderness, pain, restriction of
movements and temperature in joint surface are the clinical parameters
consider to diagnosing the inflammation. Blood markers such as C-Re-
active Protein (CRP) and Erythrocyte Sedimentation Rate (ESR) are the

pathological tool for inflammation diagnosis. The condition of sub-
clinical inflammation arises when clinical and pathological observa-
tions contradict. Imaging technologies are also used for better under-
standing of early subclinical inflammation such as ultrasonography
(USG), magnetic resonance imaging (MRI) [6,7]. But these modalities
are costly and observer dependent. Among them MRI persists radiation
during examination. The distant goal of this paper is to provide an al-
ternative opinion to the clinicians (radiologists, rheumatologists, etc.),
who may feel confused about the possible presence of subclinical in-
flammation in knee joint arthritis.

In this scope, the paper signifies the importance of thermal imaging
towards diagnosis of subclinical inflammation. Every object including
human body maintains an inherent temperature profile and change in
that profile usually indicate an abnormality [9]. Thermal medical
imaging is able to detect the difference in the temperature profile of the
concerned area of skin surface. The increase of temperature in the af-
fected area reflects as a hotspot or inflamed region in thermal images
[13,14]. Therefore, thermal images of arthritis patients with a hotspot
confirm the presence of inflammation. As the hotspot contains
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information about inflammation, analysis of this hotspot helps in au-
tomatic diagnosis of diseases, making an individual treatment plan and
also offers an insight into the prognosis [17]. Accurate segmentation of
hotspot/inflamed region is required for further analysis. The precise
segmentation of hotspot in terms of accuracy and analysis of it can have
different applications:

1) Non-invasively early subclinical condition prediction/con-
firmation: Inflammation of joint is considered as an early sign of
arthritis. Hotspot detection and segmentation will help to the early
detection of the subclinical condition.

2) Dosimetric quantification: Inflammation describes the diseases
activity in arthritis. A measure of the spread of the hotspot will
specify the intensity of inflammation subjectively. The severity of
inflammation provides knowledge about the diseases activity during
medication. This information helps clinicians to determine dosi-
metric quantification during follow up [11,12].

3) Observer independent: Automatic segmentation can reduce the
observer intervention in the detection of the area of the hotspot.

Table 1 tabulates some cases of subclinical inflammation present in
the dataset in detail. Correlation between pathological and clinical tests
of patients (suffering from inflammation) with the features of the re-
sultant hotspot is evaluated. The results will show the efficiency of the
thermal image as well as hotspot segmentation in the diagnosis of
subclinical inflammation. It will also pave the path for the other ap-
plication of thermal image in the field of arthritis.

Segmenting the hotspot regions from the thermal images is a very
challenging problem due to the presence of noise and blurry edges. The
segmentation of thermal images must overcome these challenges: (1)
under and over-segmentation of the hotspot leading to the inaccurate
diagnosis of diseases regarding the spread of inflammation, (2) missed
segmentation due to the presence of disconnected sub-regions of the
hotspot [18]. The hotspot of thermal image is the Region of Interest
(ROI) for the segmentation. Limited reporting of the over, under and
missed segmentation of ROI in thermal images are available in the re-
levant literature. Several segmentation techniques exist for hotspot
segmentation in thermal medical images such as FCM [20,23,24], K-
Means [20–23], and Otsu’s thresholding [19] based segmentation
techniques were popularly employed. Furthermore, region growing is
found to be very efficient in thermal image segmentation because of the
natural choice of pixels with the highest intensity as initial seed points
and is also found stable to noise [10]. Two Region growing is performed
parallelly on two matrices for obtaining the correct segmentation. The
significant contributions and advantages of this article are summarized

as follows:

(1) Our proposed technique offers an effective hotspot/inflamed region
segmentation mechanism of the ROI devoid of the associated pro-
blems of over, under and/or missed segmentation.

(2) We introduce an automatic multi-seed point selection criterion for
seed point initialization. That solves the missed segmentation pro-
blem arises due to the presence of disconnected regions in the
hotspot.

(3) It experiments on our newly created inflammatory thermal knee
joint dataset [17], with clinically validated ground truths for hot-
spot/inflamed region segmentation.

(4) For the nonavailability of other inflammatory knee joint dataset, an
online available benchmark dataset, DMR-IR, and one newly cre-
ated Breast dataset DBT-TU-JU are used for validating the perfor-
mance of the method.

(5) We also showed the significance of hotspot/inflamed region for the
detection of subclinical inflammation using correlation coefficient.

(6) A comparative study is presented between the existing state-of-the-
art segmentation methods used in medical thermal images and the
proposed method for proper validation and inference.

The rest of the paper is organized as the following: Section II de-
scribes the problem definition; Section III describes the proposed seg-
mentation technique. In Section IV, we compare and analyze the out-
comes of the proposed segmentation with the state-of-the-art methods.
Finally, we conclude in section

2. Problem Definition

Primarily due to the inadequate specification of over, under and
missed segmentation in respect of hotspot region identification in
thermal images; relevant prior reporting are limited in literature as of
now. Based on a small difference of temperature, thermal imaging is
able to reflect abnormality in medical thermograms. Therefore, ac-
counting small infirmations is also important for accurate analysis of
the thermograms. When analysis of the ROI (Hotspot) is employed for
better understanding then accurate ROI segmentation should be the
first step to concern. Because improper segmentation can provide
misinformation. Regarding medical importance, misinformation may
lead inaccurate treatment. Given the paramount medical importance of
accurate segmentation of hotspots/ROIs in thermal images for ensuring
accurate diagnosis, we intend to overcome this in the present scope.

According to the metrics defined by Hoover et al. in [25], over-
segmentation is identified as the multiple detections of a single region

Table 1
Details of some case study of subclinical findings on over small dataset of arthritis patients.

Sl No. Patient_id Diseases Duration Effected joint ESR CRP Pain Synovities Swelling Tenderness

1 6 Reactive Arthritis 5 Month Left Knee 81 7 Mild No mild mild
2 19 Mono-Arthritis 5 Month Knee 65 6.9 Mild No mild nil
3 21 Osteo-Arthritis 1 Year Left knee 50 1.4 Moderate Not confirmed moderate mild
4 27 Osteo-arthritis 1 Months Both knee 65 7 Moderate Not confirmed moderate moderate
5 28 Osteo-arthritis 1 Months Right Ankle 50 6.0 Severe Not confirmed Severe Severe
6 35 Osteo-arthritis 1 Year Left Knee 60 Neg Moderate Not confirmed moderate Nil
7 39 Osteo-arthritis 2–3 Year Both Knee 85 Neg Moderate Not confirmed moderate Moderate
8 40 Osteo-Arthritis 1 Year Right Knee 61 Neg Mild Not confirmed moderate Moderate
9 58 Reactive Arthritis 1 Year Left Knee 22 2 Severe Not confirmed Moderate Moderate
10 60 Osteo-Arthritis 4 Months Both Knee 10 Neg Severe Not confirmed Moderate Mild
11 64 Osteo-Arthritis 15 Days Right Knee 50 Neg Moderate Not confirmed Moderate Nil
12 72 Osteo-Arthritis 1 Year Left Knee 34 Neg Mild Not confirmed Moderate Nil
13 81 Reactive Arthritis 4 Days Left Knee 13 4.5 Mild Not confirmed Moderate Moderate
14 84 Reactive Arthritis 1 Months Left Knee −16 0.49 Mild Not confirmed Moderate Nil
15 86 Reactive Arthritis 1 Month Left Knee 10 2.00 Severe Inflammation found Moderate Moderate
16 88 Reactive Arthritis 1 Year Right Knee 50 Neg Moderate Not confirmed Moderate Nil
17 103 Not diagnosed 20 Days Right Knee 10 6.9 Moderate Not confirmed Moderate Severe
18 107 Not diagnosed 2 Years Both Knee 15- Neg Severe Not confirmed Moderate Moderate
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results. Under-segmentation is defined as the insufficient division of
multiple areas which produces a subset of the ground truth topology.
Fig. 1 represented the over and under segmentation, where Fig. 1(a) is
the ground truth segmentation and Fig. 1(b) and (c) describe the over
and under segmentation respectively. In Fig. 1(b) the segment named as
(a) is oversegemented and Fig. 1(c) segment (a) is under segmented.
Both the number of segment and their corresponding area can be
considered for representation of over and under segmentation.

In our case, there are only two regions in both the machine seg-
mented image and ground truth image. One is the hotspot region
(foreground), and the remaining region is considered as the back-
ground. So, the number of segments will act as a constant here and the
value is 2. With respect to the hotspot, oversegmentation occur when
pixels belong to the hotspot are considered as the background pixel.
Undersegmentation occurs when pixels of background are considered as
the foreground pixel. Fig. 2(a) shows a case of over-segmentation,
Fig. 2(b) shows a case of under-segmentation, Fig. 2(c) shows a case of
both under and over-segmentation in the machine segmented region
whereas, Fig. 2(d) shows a case of missed segmentation since a dis-
connected region belonging to the ROI remains undetected [25]. Here,
we are not considering the background pixels. Effect of over and under
segmentation on hotspot area and background is opposite. Over-
segmented hotspot area causes under segmentation of background and
vice versa.

Our primary interest lies in the accurate detection of the fore-
ground. Moreover, the accuracy of the detected hotspot is also crucial
for the sake of pathological decisions. Therefore, we defined the below
metrics specifically for quantify the accuracy of hotspot segmentation,
based on the area of the regions, i.e., the number of pixels.

We consider the following sets: a set Ri
S consisting of all the seg-

mented pixels in the ith single disconnected sub-region of the complete
ROI produced by a segmentation technique, a set Ri

G comprising all the
pixels of the ith single disconnected sub-region of the complete ground
truth segment. Let CR be the number of disconnected sub-regions in the
segmented image and CG be the number of disconnected sub-regions in

the ground truth image. We define:

(1) Over-segmentation: A segmentation is considered as over-segmenta-
tion if ⊂R Ri

S
i
G for any ∈i i C, ; where, = =C C CR G.

(2) Under-segmentation: A segmentation suffers from under-segmenta-
tion if ⊃R Ri

S
i
G for any ∈i i C, ; where, = =C C CR G.

(3) Over and Under-Segmentation: There could exist both over and under-
segmentation in a segmented region if,

∪ ⊃ ∪ ⊃R R R R R Randi
S

i
G

i
S

i
S

i
G

i
G

for any ∈i i C, ; where, = =C C CR G.

(4) Missed segmentation: We identify a missed-segmentation if the con-
dition <C CR G satisfies.

Based on these defined metrics on thermal images, Fig. 2(e) shows
an example of accurately segmented ground truth. Whereas Fig. 2(f),
(g) and (h) demonstrates over, under and missed segmentation re-
spectively.

3. Proposed Segmentation Method

We used conventional Region Growing method with modified
stopping and similarity criteria with automatic seed selection procedure
for segmentation of ROI from thermal image. Segmentation of original
image using region growing either suffers from over segmentation or
under segmentation. Implementation of existing methods indicate
under segmentation is common phenomena. Overcome this problem we
do not rely only on the original image. Using other features of the image
we try to compensate the problem. In this scope of the paper entropy
feature is used to overcome the over and under segmentation. Region
growing algorithm is applied to the original image and also to the en-
tropy image, is generated using Eq. (2). An intersection of these two
results of two region growing produces the actual result. Provided both
the segmentation should produce under-segmented results. If one seg-
mentation among the two, resulting over-segmentation will lead to the
incorrect segmentation. The concept is illustrated in the Fig. 3. Fig. 3(a)
describes the situation when two under-segmented results are gener-
ated, and it shows there is a high possibility to provide actual ground
truth. Whereas, in other two cases over segmented result will dominate
the final segmentation result. Along with the original image, other
features such as image energy, image contrast, homogeneity, correla-
tion can be used, provided that both the segmentation has to persist
common area. In this scope, we use entropy feature and original image
for correct segmentation.

Entropy is a feature that signifies the texture of an image. Low

Fig. 1. (a) Ground truth Segemntation map. (b) over segmentation of the region
‘c’ that create a new segmentation ‘d’. (c) Under segmentation of region ‘a’.

Fig. 2. (a) Over-segmentation of a single disconnected region of the hotspot, (b) Under-segmentation, the dotted line is the boundary of the ground truth, (c) Both
under and over-segmentation, the yellow region represents under-segmentation whereas the brown region represents over segmentation of the region, (d) Missed
Segmentation of the hotspot region, the violet region is undetected part of the hotspot, (e) An example of correct segmentation (ground truth) of the hotspot in a
thermal image (f) Over-segmentation of the hotspot in the same thermal image. (g) Under-segmentation of the hotspot (h) Missed segmentation.
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entropy defines low variation, low disorder. Therfore, Entropy feature
able to signify the grouping of homogeneous pixels in order to segment
thermal images.

3.1. Pre-processing

Thermal images are captured in the gray palate. Gray palate is a
representation of gray images consists of three channels (24 bit). The
entire three channels contain the same value i.e., the gray value. So,
thermal images are converted into gray images (8 bit) that deduct two
similar channels. Raw thermal images are consist of a color bar, com-
pany logo, maximum and minimum temperature points, etc. So, crop-
ping becomes essential for further processing. We cropped thermal
images manually, and gray converted images are used for later pro-
cessing. Thermal images persist different kinds of noise like other
imaging technology. In [36] authors presented a brief overview of
noises of thermal images. They describe that images captured by LWIR
camera with FPA (Focal Plane Array) persist fewer noises in indoor
condition. There is more chance of noise due to emissivity fluctuation.
They addressed the problem and described that if there is a large dif-
ference in the emissivity of background and the object, then it will
produce negligible noise. Detector noise is also an issue in the thermal
image. We used existing density estimation based noise removal [36]
method for our work. As density estimation is an well known method
so, we are not discussing the algorithmic steps of density estimation
method.

3.2. Entropy image

Image entropy is derived from Shannon’s Entropy, known as
Information Entropy. Whereas, statistical entropy is used in every as-
pect and it is based on Boltzmann constant. Statistical entropy measures
the disorder of systems as follows.

=E k Tlog (1)

Where E is the calculated entropy of any system, k is the Boltzmann’s
constant and T is the possible arrangement of microstates. Regarding
image segmentation in this proposed work, image matrix is considered
as a system, and pixel values are states of that system. The information
of disorder plays an important role in image segmentation. So, for a
given matrix T of size M×N, we can derive the entropy matrix, Θ of
same size i.e. M×N, using following equation.

= k TΘ logu v u v, , (2)

Where, u varies from 0 to M−1 and ν varies from 0 to N-1. To compute

entropy for a given image, Tu,v is computed using the Eq. (3) and
Boltzmann Constant (k) is defined as the value of the maximum state,
i.e. 255 which is the maximum gray level and named as ‘Image Con-
stant’ specifically for the proposed method.
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where Tu,v is the updated pixel value calculated based on the influence
of its neighbourhoods, Iu,v is the pixel value of (u,ν) coordinates. The
possible arrangement of pixels with respect to the centre pixel is com-
puted in a neighborhood of size (2 k+ 1)(2 l+ 1). The values in Θ are
then normalized within the range (0, 255) and called as an Entropy
image. As discussed earlier, we individually perform region growing in
both the images using their respective thresholds to obtain two separate
regions, which are then intersected to get the final output. This output
is considered to be more accurate reducing under-segmentation, ratio-
nalized in the next sub-section.

3.3. Modified Region growing algorithm

The Conventional Multi-seeded Region Growing technique (CMRG)
requires single/multiple seed points and a threshold to start the seg-
mentation [27]. By assimilating homogeneous neighbor pixels, the
segment grows iteratively. The resulting segmentation could highly
depend on the initial seed chosen, the threshold value and the criteria
in which neighboring pixels are examined. The selection of homo-
geneity criteria in region growing relies not only on the problem under
consideration but also on the type of image subjected to segmentation.
There are three major issues in the CMRG [27]. They are (1) Selection
of seed points, (2) Similarity and connectivity criteria, (3) Termination
of the segmentation process (Stopping rule).

Properties of the thermal image ensure the effectiveness of region
growing in hotspot segmentation. Hotspot area of the thermal image
comprises the highest pixel values. So, it makes the seed selection
procedure easier. Highest pixels of the thermal image are considered as
seed during thermal image segmentation. The boundary of the region is
detected by the stopping criteria. Stopping criteria should be well de-
fined, that it can identify actual region boundary. Stopping criteria is
dependent on the image features. Pixel intensity threshold values,
image histogram, etc. are often used as the stopping criteria. Hence,
justifiably we use the pixels with the highest intensity value as the seed
points in every epoch. Considering the seed point with the coordinate (u,
v). we define two variables α and β, which are intialized to Iu,v and Θu,v

respectively. Each pixel in the 8-neighborhood (N8) of the seed point is
considered for comparison using Eq. (4), providing thereby the simi-
larity criteria and stopping rule. Initially =ξ ϕ, =ω ϕ and ξ , ω are the
resultant region from the two input matrix I and Θ.

= ∪ − <
= ∪ − <

∈
ξ ξ x y if α I ρ

ω ω x y if β τ
I N of I

{( , } | |
{( , )} | Θ |

, Θx y

x y
x y x y u v

,

,
, , 8 ,

(4)

where, two variables α and β, are updated using Eq. (5) when new
pixels from the neighborhood of any boundary pixel is/are identified in
the “detected region,”.

= ∑ ∈ =

= ∑ ∈ =
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2

(5)

where, p represents the pixel value from image I with the position (x,y)
and q represent the pixel value from image Θ with the position (x,y).
We used trial and error method for selection of a threshold for stopping
criteria, detailed in section IV-E. The conditions in Eq. (4) are followed
in each iteration growing the detected region while updating the vari-
ables α and β in every iteration. When the iteration stops, the final set of
pixel coordinates ξ and ω are produced. The above description is based
on the region growing procedure using single seed. From the

Fig. 3. (a) Intersection of two under-segmented images. (b) Intersection of two
over-segmented images. (c) Intersection of one under-segmented image and one
over-segmented image.
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observation of dataset it is evident that disconnected hotspot regions
are present in thermal images. If more than one regions exist than single
seed based region growing will fail in detecting all the disconnected
regions. So, Proposed method uses region growing algorithm which is
based on multiple seeds. The procedure for selecting multiple seeds
discussed in section III-D. Multi seed based region growing algorithm is
an extension of single seed based region growing. For multiple seeds
there may be multiple segments.

Let us consider for image I and Θ, region growing algorithm has
found out m1 and m2 segments respectively. ξi is the detected inter-
mediate ROI grown from the ith seed point. The same process is repeated
for all the remaining seed points only if they do not belong to the al-
ready detected hotspot region ξi.

= ∪ ξΞ Ξ i (6)

where i varies from 0 to m1. The final region output Ξ is computed using
Eq. (6) which is the union of ξi’s detected from all the m1 seed points. In
the same way the Ω is calculated from the obtained ωi, where i varies
from 0 to m2, given in Eq. (7).

= ∪ ωΩ Ω i (7)

To appreciate the significance of Eq. (4) in tackling under and over
segmentation, we assume the formation of two different sets of pixel
coordinates during the process of region growing. These two sets are
denoted as Ξ and Ω.

from the above discussions and equations it is clear that Ξ and Ω are
two output obtained from the two image I and Θ. They are equal in size,
they consist of the same background. But for multi seed region growing
that may consist a different number of segments. So, the intersection of
between them will deduct the small and inessential segments.

Provided, both Ξ and Ω are inaccurate due to under-segmentation,
their intersection could be perceived as less under-segmentation,
proved in Theorem 1. The proposed method gives the final segmented
region Φroi as the intersection of Ξ and Ω, given in Eq. (8).

= ∩roiΦ Ξ Ω (8)

Since the intersection of two independent sets of pixels is outputted
as the final segmented ROI (Φroi), the under-segmentation problem of
CMRG may be avoided specifically. To prove this, let us consider the
following sets: a set Rs consisting of all the segmented pixels of a single
disconnected sub-region produced by the CMRG. Set Gs consisting of all
the pixels of a single disconnected sub-region of the corresponding
ground truth segment. We assume three cases of CMRG segmentation.
The cases are:

Case 1:. The output of CMRG technique is under-segmented, i.e.,

⊃R Gs s (9)

Case 2:. The output of CMRG technique is over-segmented, i.e.,

⊂R Gs s (10)

Case 3:. The output of CMRG technique is both over and under-segmented,
i.e.,

∪ ⊃ ∪ ⊃R G R and R G Gs s s s s s (11)

Postulate 1: The sets ξ and ω, both individually follow these three
cases of RS since their formation is similar to the CMRG technique.

Theorem 1:. The segmented pixels set Φroi is a proper subset of the pixel set
Rs when Rs is under-segmented, i.e. case 1.

Proof:. Based on Eq. (9), i.e. ⊃R Gs s and Postulate 1, the sets ξ and ω
follow Eq. (12).

⊃ ⊃ξ Gs ω Gsand (12)

Substructing, the relations of ξ and ω in Eq. (12), we get,

− ⊃ − ⊃ξ ω Gs Gs ξ ωwhen, (13)

Or

− ⊃ − ⊃ω ξ Gs Gs ω ξwhen, (14)

Since, Gs – Gs is a null set ϕ, Eq. (13) and Eq. (14) can be written as,

− ⊃ ⊃ξ ω ϕ ξ ωwhen, (15)

Or

− ⊃ ⊃ω ξ ϕ ω ξwhen, (16)

From Eq. (15) and Eq. (16), we can imply the below relationship,

− ∪ − ⊃ξ ω ω ξ ϕ( ) ( ) (17)

Now the symmetric difference in Eq. (17) can be written as,

∪ − ∩ ⊃ξ ω ξ ω ϕ( ) ( ) (18)

Combining Eq. (8) with Eq. (18), we get the below relationship,

∪ − ⊃ξ ω ϕ( ) Φroi (19)

Since the difference between the union of the two sets ξ and ω and
Φroi is greater than ϕ. So, we can say that the output set Φroi contains at
least 1 pixel less than the output set of CMRG, Rs. Therefore, from Eq.
(19) it could be concluded that ⊂ RΦroi s. This implies the occur-
rence of less under-segmentation in Proposed method compared to the
CMRG. However, if case 1 is true, then over-segmentation may take
place.

Theorem 2:. The ground truth set Gs is a proper subset of the segmented
pixel set Φroi when Rs is under-segmented, i.e. case 1.

Proof:. Intersecting, the relations of ξ and ω in Eq. (9), we get the below
relationship,

∩ ⊃ ∩ξ ω Gs Gs (20)

This can be written as,

∩ ⊃ξ ω Gs (21)

Hence from Eq. (8) and Eq. (21),

⊃ GsΦroi (22)

From Eq. (22), we can imply that the set Φroi is a smaller set than the
ground truth segment set Gs. This proves the absence of over-segmen-
tation in proposed segmentation process. However, in such a case
under-segmentation cannot be totally ignored.

Theorem 3:. The segmented pixel set Φroi is a proper subset of ground truth
set Gs when Rs is over-segmented, i.e. case 2.

Proof:. Based on Eq. (10), i.e. ⊂R Gs s, we can assume that the sets ξ and
ω follow Eq. (23) since their formation is similar to the CMRG.

⊂ ⊂ξ Gs ω Gsand (23)

Intersecting, the relations of ξ and ω in Eq. (23), we get the below
relationship,

∩ ⊂ ∩ξ ω Gs Gs (24)

This can be written as,

∩ ⊂ξ ω Gs (25)

Hence from Eq. (8) and Eq. (25),

⊂ GsΦroi (26)

From Eq. (26), we can imply that the set Φroi is a smaller set than the
ground truth segment set Gs. This proves the absence of under-seg-
mentation in proosed segmentation process.

Theorem 4:. The segmented pixel set Φroi is a proper subset of ground truth
set Gs when only any one of the ξ and ω is over-segmented, i.e. case 1 and 2
both occur.
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Proof:. When case 1 and 2 both occur, i.e., if ξ is over-segmented while
and ω is under-segmented or vice versa, assuming ξ as the over-
segmented set and ω as the under-segmented set we can write the
following,

⊂ ⊃ξ Gs ω Gsand (27)

From Eq. (27), we can infer,

⊂ ⊂ξ Gs ω (28)

Now, Eq. (28) can be written as,

⊂ξ ω (29)

Based on Eq. (29), we can conclude that,

∩ =ξ ω ξ (30)

Combining, ⊂ξ Gs and Eq. (30) we can write,

∩ ⊂ξ ω Gs (31)

Hence from Eq. (8) and Eq. (31), we get,

⊂ GsΦroi (32)

From Eq. (32), we can imply that the set Φroi is a smaller set than the
ground truth segment set Gs. This proves the absence of under-seg-
mentation in such a case. The same could be proved when ξ as the
under-segmented set and ω as the over-segmented set.

If anyone of ξ and ω is over-segmented or both of them are over-
segmented, then over-segmentation cannot be avoided. Hence, to avoid
over-segmentation, we choose the thresholds ρ and τ accordingly.
Furthermore, if case 3 occurs, the proposed method unable in reducing
both under and over-segmentation. Although, since Φroi could be a
smaller set than ξ and ω, either of the following results may occur: 1)
Φroi causes more over-segmentation than ξ and ω, 2) Φroi causes less

Fig. 4. Graphical comparison of the effects of thresholds with respect to Useg and Oseg measures in both the data sets: (a) Energy threshold in knee data set, (b) Entropy
threshold in knee data set.

Fig. 5. Plot the effects in segmentation Jaccard Index with respect to both thresholds for knee data set.
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under-segmentation than ξ and ω, 3) Φroi together causes more over-
segmentation as well as less under-segmentation than ξ and ω.

3.4. Automatic selection of seed points

Missed segmentation should be handled by any segmentation
method for correct segmentation. Thermal images may contain dis-
connected hotspot regions, with the pixel values of different ranges.
Since in thermal images, CMRG technique assumes the pixels with
highest gray value as seed points, the hotspot regions having pixels
smaller than the highest gray value are bound to remain undetected. In
that event, there is a high probability of missed segmentation. To solve
this issue, we introduce criteria for seed point selection. The pixels with
the highest gray value are selected as the initial seed points for the first
epoch. After the ith epoch, seed points are again selected for the next
epoch using two criteria. Firstly, the seed points are the pixels with the
highest gray value among all the pixels of the input image excluding the
ones already included in the first epoch, i.e. the current Φroi. Secondly,
the highest pixel (say P) must satisfy Eq. (33),

> + ⌈ × − ⌉P min roi η max roi min roi(Φ ) { (Φ ) (Φ )} (33)

where min(Φroi) is the minimum gray value in Φroi, max(Φroi) is the
maximum gray value in Φroi. And η is a real number whose value can lie
in the range [0,1]. The value of η can vary for different datasets. We
obtained the best results using η=0.74 for both data sets (see section
IV-D). At the beginning of each epoch, new seed points are calculated. A
pixel is considered as a seed point for the next epoch only if its gray
value exceeds a certain integer (say k). Let us assume the intermediate
segmented set of pixels Φroi in the jth epoch has the lowest gray value
(say a) and the highest gray value (say b). Therefore in the (j + 1)th

epoch k must lie in between a and b where, = + −k a η b a( ). This in-
dicates the gray value of the seed point must be greater than k. We
assume each disconnected hotspot region in the ROI must contain at
least one pixel with a gray value greater than k. Hence, the missed
segmentation can be reduced using Eq. (33) but may not be eliminated.

3.5. Thermal imaging in the detection of inflammation:

This literature primary focus is the detection of subclinical in-
flammation through Thermal Images. The literature aims to prove the
efficacy of Thermal Images in detection of subclinical inflammation
through proving its efficacy in accurate detection of inflammation. ROI
extraction is the first step of the analysis. Association between ROI
features and clinical test data is a way to describe the relationship be-
tween them. The correlation between features of ROI extracted from the
thermal image, and the ESR or CRP for the known cases are evaluated.
Positive correlation will prove that the thermal image can detect the

inflammation. Hence, thermal image able to provide a decision re-
garding subclinical inflammation for better disease prognosis. The
correlation coefficient is employed here for this purpose. The correla-
tion coefficient is a well known and simple method, often used for data
analysis. Correlation coefficient represents the degree of association
between two linearly related datasets. A linear relationship should exist
between datasets to find the correlation. Scatter plot and trend line on
the scatter plot is evidence of a linear relationship between the given
dataset. The scatter plot, trend line and resultant correlation between
the features of ROI from thermal images and pathological tests is shown
in Fig. 10.

4. Experimental results & discussions

4.1. Database preparation

The proposed segmentation technique in our work was tested on
three thermal medical image datasets: (1) DBT-TU-JU breast dataset
[15] (40 images), (2) DMR-IR breast dataset [16], designed by Silva
et al. (44 images), and (3) a new inflammatory knee joint dataset [17]
(50 images), which was created and collected from the Physical Med-
icine and Rehabilitation (PMR) Department, Agartala Government
Medical College (AGMC) and Regional Cancer Center (RCC), Govind
Ballav Pant Hospital (GBP), Agartala, Tripura, India. The first and
second dataset contains Breast images with an abnormality such as
ductal breast cancer, malignant, and benign tumor, etc. The third da-
taset consists of thermal images of different inflammatory pain-related
diseases of knee joints such as Osteo Arthritis, Rheumatoid Arthritis,
Reactive Arthritis, Mono Arthritis, etc.

4.2. Clinical validation of the datasets

Medical data analysis consist an important phase which is valida-
tion. Validation referred to the comparison of acquired data with
medical data. Medical data are profusely used for disease confirmation
for more than several years. So, diseases confirmation of acquired data
should be validated using medical history. Hence, it is considered an
important part of medical image processing. DBT-TU-JU and DMR-IR
datasets were already validated clinically in [15] and [16], respec-
tively. The newly created inflammatory knee joint dataset of 50 thermal
images was validated by examining the Arthritis patients. Presence of
inflammation is validated using ESR or CRP by physicians. We also used
these two blood markers for validation purpose. Clinical examination
by a physician is also incorporated here for validation. ESR, CRP and
clinical examination result found positive for maximum numbers of
inflammatory arthritis data, and negative for non-inflammatory data.
Among these three factors if three of them are found positive than
physician consider it as positive and vice-versa for negative cases. We
consider these three factors in validating our data. The positive and
negative cases are considered in this work follow these validation
process. Subclinical inflammation in arthritis joint is considered when
physician unable to assess the inflammation condition. ESR and CRP
also found unable to help physician. We consider these cases and a
physician also confirmed the subclinical conditions.

4.3. Generation of ground truth

Ground truth creation for all the three datasets was necessary to
verify the competence of the proposed technique in comparison to the
state-of-the-art. An alternative solution is the creation of ground truths
using manual segmentation [28]. Manual segmentation is considered as
the most reliable method for segmentation to identify the shape and the
structure of a particular clinical task. A doctor/clinician has more
knowledge and idea about the diseases, its spread, and its origin. Only
they can recognize the affected area appropriately, and for that, ground
truths should be validated by the expert doctors. Ground truths for the

Fig. 6. The effect in Jaccard Index (JI) with respect to the parameter (η).
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datasets were created in two consecutive steps. Firstly, seven thermal
image experts/technicians independently traverse the hotspot region of
the thermal images to generate ground truth images using the GNU
Image Manipulation Program (GIMP) [29] software. In the next step,
pixel wise voting policy is considered to find the final output ground
truth image. In pixel-wise voting policy, if a pixel is regarded as a
foreground pixel by maximum of four technicians, then it is counted as
a foreground pixel. By classifying each pixel based on this method a
final ground truth is generated. In the second step, the medical expert
(doctor) analyze final ground truth and finalize them.

4.4. Performance measures

Different quantitative measures have been used to analyze the
performance of proposed segmentation with the state-of-the-art with
the clinically validated ground truth. Theoretically proven in the pre-
vious section that proposed method reduces both under and over-seg-
mentation concerning the RG technique. Articulating our primary
focus, we quantify over and under-segmentation using (Oseg) and (Useg)
measure respectively described in [26]. Oseg quantifies the amount of
over-segmentation in the resultant segmented image concerning its

Fig. 7. Jaccard Index, Dice Index, Precision, Recall, Over segmentation and under segmentation rate for all datset used. Here, the Knee Data referred to the the newly
designed inflammatory knee joint dataset All values are given as mean ± standard deviation vs. each method. (b) and (c) are considered together for representing
accuracy, there should be little difference between the precision and recall for each method. (e) and (f) are also considered together, over and under segmentation
both should be near to ‘0’ for obtainning accurate segmentation.
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ground truth. If the value of Oseg is 0 (zero) for any segmented image, it
refers to no over-segmentation. Similarly, to what extent a segmenta-
tion method resist under-segmentation is quantified by the Useg mea-
sure. Apart from these two measures the following measures are also
used: (1) Jaccard index (JI) [30,31,34] (2) Dice similarity index (DS)
[30], (3) Recall (RC) [30], (4) Precision (PRC) [30,35]. The Jaccard
Similarity Index (JI) is an accepted measure for evaluating the

efficiency of any segmentation method. JI works well for larger and
simple shaped objects [32]. JI measures the similarity between ground
truth and segmented image and varies between (0,1), where, 1 (one)
indicates a perfect overlap of the compared segmentation. DS index
quantifies the overlapping of the ground truth and segmented image.
The value of DS also varies between the range of (0,1) where 1 indicates
good segmentation. Recall (RC) & Precision (PRC) are popularly used

Fig. 8. Comparison of ROI segmentation in knee and breast data set. Row 1: Original Image, Row 2: Ground Truths, Row 3: Result of K-Means, Row 4: Result of FCM,
Row 5: Otsu’s Thresholding, Row 6: Region Growing (RG), Row 7: Mean Shift, Row 8: FO-DPSO segmentation, Row 9: Proposed Segmentation Method.

Fig. 9. Failure cases. Row 1: Original images. Row 2: Corresponding Ground truths. Row 3: Output of Proposed method.
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together to identify the effectiveness of a segmentation technique.
Higher the value of RC and PRC, better the performance of the tech-
nique. Among these two measures, if the value of one is higher than the
other with a significant difference, that implies less accuracy.

4.5. Thresholds and parameter selection

An optimal thresholds ρ and τ were selected separately for both the
datasets to test our technique. Both ρ and τ vary in the range of (0,1).
The thresholds are chosen such that we achieve a little under-seg-
mentation intentionally. To find the optimal thresholds for all the da-
tasets separately, we have studied the plot pattern between a series of
thresholds with both Useg and Oseg measures. Plot pattern of thresholds
for knee dataset have shown in Fig. 4(a) & (b). The black dotted line
represents the under-segmentation effects for a threshold whereas the
blue dotted line represents the effects in the over-segmentation mea-
sure. The y-axis contains a general range of over and under-segmen-
tation values. The plot suggests that with the increase in the threshold
values under-segmentation increases, whereas over-segmentation de-
creases. In all the cases we obtain a threshold point (say J) where the
curve of Useg and Oseg intersects with each other. This threshold value J
theoretically produces the perfect segmentation when the region is
growing is done using a single threshold. Hence, we choose the
threshold point slightly higher than J to produce little under-segmen-
tation as per our necessity described in the previous section. Based on
the plot results, we choose ρ as 0.03 and τ as 0.02 for the inflammatory
knee joint dataset whereas choosing ρ as 0.03 and τ as 0.02 for the
DMR-IR breast dataset. The plot in Fig. 5 illustrates that the best seg-
mentation accuracy was attained using the selected thresholds for knee
data set. The performance of the algorithm does show dependency on
the choice of the parameter η, selected between the range of (0,1). The
plot in Fig. 6 illustrates that the best segmentation was achieved with η
in the range 0.6 and 0.7 for all the datasets (η=0.66 for the DBT-TU-JU
dataset, η=0.7 for the DMR-IR dataset, and, η=0.7 for the knee joint
dataset).

5. Results and discussions

We compared the proposed technique with other recent and/or
widely accepted state-of-the-art segmentation methods which were
successfully used for medical thermal image segmentation. Such tech-
niques for this purpose include: (1) Otsu’s Thresholding, (2) K-means
segmentation, (3) Fuzzy-C-Means (FCM), (4) Mean-shift Segmentation,
and (5) Region Growing (RG) [27], and (6) FO-DPSO: Fractional Order
Darwinian Particle Swarm Optimization [33]. The performance of the
proposed method also validates by performing it on two baseline breast
dataset discussed in section IV-A, which are available online. The da-
taset contains breast images with an abnormality such as ductal breast
cancer, malignant, and benign tumor, etc. The comparison between the
seven state-of-the-art techniques along with the proposed method is
indicated in Fig. 7 regarding average over-segmentation (Oseg) and
average under-segmentation (Useg) along with the Jaccard Index, Dice
Index, Recall and Precision. Also, the standard deviation is shown in a

graph with error bars. With Oseg and Useg suggest that the proposed
technique can obtain better results than the state-of-the-art in both the
datasets. The results imply the proposed method can serve as an effi-
cient alternative technique for thermal medical image segmentation.
Segmentation outputs of the proposed technique along with the state-
of-the-art methods are compared in Fig. 8. The datasets are not fol-
lowed a normal distribution. Therefore, to find the statistical sig-
nificance of the values of performance measures Kruskal-Wallis P-test is
used. Kruskal-Wallis P-test is a non-parametric statistical significance
measure. The result of P-test for different methods are less than 0.05
that means the accuracy of the proposed method is statically significant.

As proven in the previous section, proposed segmentation suffers
relatively less from under-segmentation, compared to the RG. This be-
havior is explained in Theorem 1. But the over-segmentation issue is not
entirely resolved. As per Theorem 2, there should not be any over-
segmentation. We assume in (11) that, ξ and ω are a proper subset of Gs,
and ⊃ω Gs. Although, (31) is true for all cases, (9) may not satisfy in
few cases resulting in over-segmentation.

> >ξ Gs ω Gs| | | | and | | | | (34)

From the experimental analysis, we have observed that segmenting
the two breast datasets was more challenging than the knee joint da-
taset. Compared to the breast datasets, all the segmentation methods
discussed in this paper including our proposed segmentation method
perform better on the knee joint dataset. It also observed that all the
other method are prone to produce under segmented results. This the
reason why we do the intersection of the two methods. Our methods
failed to segment accurately when both the RG deliver over segmented
results. Some examples are shown in Fig. 9.

Fig. 10. Shows the scatter plot of ESR values and feature values
obtained from the ROI. The trend line of the scatter plot shows the
linearity of datasets. A line can be a plot in the scatter graph that has
nearly the same distance from all the data. It is enough as evidence of
linearity between the datasets. The x-axis represents the ESR or CRP
values of samples, and Y-axis represents the mean intensity of seg-
mented ROI. A linear relationship between data, as proved through the
scatter plot, the correlation coefficient can be applied to the data. The
correlation coefficient between infrared datasets and blood markers
found +0.5. The correlation coefficient value 0.5 implies a moderate
linear relationship between the datasets. That means intensity mean of
ROI found high when ESR or CRP values are high. The conclusion that
Thermal Images can detect inflammation as blood tests (ESR and CRP)
can be drawn from the result. So, thermal imaging able to improve
accuracy in diagnosing subclinical inflammation if it is used along with
the other diagnosing criteria. The gain i.e achieved by using thermal
imaging in detection of subclinical inflammation, able to significantly
modify the way arthritis patients would be managed.

6. Conclusion

There prevails lack of algorithms that automatically segment the
hotspot region from the medical thermal images of different diseases. In
this paper, we have proposed a method, a new scheme to segment the
hotspot region in the thermal images of inflammatory knee joints effi-
ciently. It lends itself to an automatic approach with a manually ad-
justed threshold value that is simple to implement and quite general-
ized for other thermal medical image applications. The proposed
approach substantially balances the over, under and missed-segmen-
tation, thus providing the segmenter a tool to attain acceptable seg-
mentation quality. We have already discussed that proposed segmen-
tation method is an extension of the RG technique, so the expectation
should be to get better results compared to that and it stood to the
necessary expectations with higher scores in all the measures. It also
performs competitively along with the recent state-of-the-art segmen-
tation techniques. The proposed scheme may be used in developing
health abnormality detection systems based on thermal images in future

Fig. 10. Comparison of ROI segmentation in knee and breast data set.
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