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Abstract 
 Foreground segmentation of moving objects in adverse atmospheric 

conditions such as fog, rain, low light and dust is a challenging task in 
computer vision. 

 The advantages of thermal infrared imaging at night time under adverse 
atmospheric conditions have been demonstrated, which are due to the long 
wavelength. 

 However, existing state-of-the-art object detection techniques have not been 
useful in such scenarios. 

 In this paper, we propose an improved background model that utilizes both 
thermal pixel intensity features and spatial video salient features. 

 The proposed spatial video salient features are represented as an Akin-based 
per-pixel Boolean string over a local region block, and depend on the effect 
of neighbouring pixels on a centre pixel. The result of this Boolean 
procedure is referred to as the - ‘Akin-based Local Whitening Boolean 
Pattern (ALWBP),’ which differentiates foreground and background region 
accurately, even against a cluttered background. 
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 The background model is controlled via 

 (i) the automatic adaptation of parameters such as the decision threshold RT and, 
learning parameter L, and  

 (ii) the updating of background samples Bsample_int and,- Bsample_ALWBP to minimize  

 (a) the effect of the background dynamics of outdoor scenes, and  

 (b) the temperature polarity changes during the maiden appearance of a moving object 
in thermal frame sequences. 

 

 The performance of this model is evaluated using nine existing standard 
segmentation performance metrics on our newly created -‘Tripura 
University Video Dataset at Night time (TU-VDN)’ and on the publicly 
available CDnet-2014 dataset. 

 Our newly created weather-degraded video dataset, namely, TU-VDN, 
consists of sixty video sequences that represent four atmospheric conditions, 
namely, low light, dust, rain, and fog.  

 The results of a performance comparison with fourteen state-of-the-art 
detection techniques also demonstrate the high accuracy of the proposed 
technique. 



Background Challenges 

 For detecting moving objects, both a visual digital camera and a typical charge-

coupled device (CCD) camera have the advantage of high resolution, which renders 

them more suitable for day time or night time use with a proper lighting setup. 

 However, they are ineffective in environments with poor illumination or visibility 

due to atmospheric conditions because the appearance of objects in the captured 

images is not as clear as in images that are captured during under normal 

atmospheric conditions.  

 To address the limitations of visual and CCD cameras at night time, many studies 

have been conducted on methods that detect objects with near/far-infrared 

(NIR/FIR) based cameras. 

 NIR cameras are robust against darkness, and however, they have a similar drawback to that faced 

by CCD cameras when the interferences are produced by vehicle headlights. In addition, the 

attenuation of visual, CCD, and NIR radiation that is produced through atmospheric aerosols is 

mostly due to their short wavelengths. 

 In contrast, FIR cameras enable robust object detection regardless of the atmospheric conditions 

because as the spectrum wavelength increases, the effect of bad atmospheric conditions decreases.  
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 However, there have many key issues that are related to object detection at night 

using an FIR camera, such as the following:  

 Flat Cluttered Background: The infrared radiation signal must travel from the target to the 

camera sensor among adverse atmospheric particles and is attenuated due to scattering; the loss of 

radiation along the way produces a blurred flat region. In addition, with the thermal sensors, 

because of large variations in the surface, which includes hot and cool objects such as buildings, 

vehicles, animals, humans, and light poles, the foreground objects and the background scene 

become indistinguishable. 

 Temperature Polarity Changes: Thermal temperature adjustment during the maiden appearance 

of a moving object in a video sequence causes illumination-type effects in the background model 

from the current video frame and, therefore, yields false classifications. 

 Background Dynamics: Outdoor scenes are affected by movement in the background, e.g., due 

to waves or swaying tree leaves. 



Contributions 

 The primary contributions of this paper are summarized as follows:  

 The paper describes in brief a comprehensive thermal video dataset of outdoor night scenes that 

are degraded by various adverse weather conditions, such as fog, dust, rain, and low light/poor 

illumination. This dataset is referred to as Tripura University Video Dataset at Night time (TU-

VDN). Researchers can utilize this dataset for testing and ranking of existing and new algorithms 

for moving object detection. 

 The paper proposes an improved video salient feature-based background model algorithm for 

detecting moving objects in night videos that were captured under adverse atmospheric 

conditions, in which thermal intensity information, in addition to spatial information, is fully 

taken into account. 

 This algorithm can handle key challenging issues in thermal and outdoor adverse atmospheric 

environments, such as a flat cluttered background, a dynamic background, and thermal 

temperature polarity changes. 

 The proposed salient-feature-based moving object detection method is successfully applied to our 

adverse-atmospheric-condition-based thermal night dataset, namely, TU-VDN, and the results 

demonstrate that it outperforms related state-of-the-art methods in terms of detection performance. 

 The performance of the proposed method is also evaluated on change detection dataset - ‘CDNet 

2014’. 



Problem Definition 

 The thermal infrared radiation signal must travel from the target to the camera 

detector sensor under adverse weather conditions or through atmospheric particles; 

therefore, more of the signal can be lost along the way, which produces blurry flat 

regions. 

 The thermal infrared camera produces an image according to the differences in the 

omitted thermal radiation between an object and the background.  

 If the background emits the same amount of thermal radiation as objects, e.g., a 

cluttered background, the foreground and background regions will be 

indistinguishable. 

 We investigated the performance of a perceptual discrimination salient-feature-based 

methodology on a flat cluttered background, as shown in Fig. 2 (P.T.O.). The sample 

frames are collected from our TU-VDN dataset with a flat cluttered background. 



Continue… 

 The pixel values of the background region in Fig. 2(a) and of the foreground object 

region in Fig. 2(b) are similar and vary smoothly; hence, the background and 

foreground true-positive pixel intensity values cannot be properly categorized, 

thereby resulting in incorrect interpretations. 

 The main difficulty that is faced by well-known feature descriptors (LBP, LSBP) on 

such flat cluttered regions is homogenous neighbouring pixel intensity values. 
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 In Fig. 2(a), we have investigated a background-based local flat region where each 

neighbouring pixel similarity pattern (Bs) is computed using the centre pixel, where 

is marked as ‘x’. 

 In Fig. 2(b), we have also investigated a foreground-object-based local flat region 

that is cluttered with the background region. The foreground-region-based similarity 

pattern (Fs) has 6 matches out of 8 with the background-based similarity pattern 

(Bs), which could be categorized incorrectly as background. 
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 We have overcome over this challenge by increasing the robustness of existing local 

binary feature descriptors, to obtain the ALWBP descriptor. 

 In Fig. 2(c), the ALWBP similarity pattern (As) is computed using a reference centre 

pixel, which is marked as ‘√’. As a result, the foreground similarity pattern (As) has 

3 matches out of 8 with the background pattern (Bs), which is sufficiently 

discriminative to be correctly categorized as foreground. 



Proposed Methodology 

 The only advantages of thermal cameras are that the captured images are not influenced 

by illumination and shadows and a pedestrian can be clearly distinguished as a 

foreground object due to its temperature absorbance. 

 Other foreground objects, such as moving vehicles, that are comprised of several body 

components, such as wheels and headlights are visible, while the remaining components 

have similar texture to the as background. 

 However, finding a satisfactory reference or background model for background 

subtraction is difficult when there are several real-time objects in thermal frames. 

 In this paper, we present a satisfactory background segmentation model that uses the 

novel Akin-based Local Whitening Boolean Pattern (ALWBP) salient features. It handles 

flat cluttered regions in thermal frame sequences and increased false-negative ratios.  

 The model is inspired by pixel-level and spatiotemporal-level methods because LBP or 

LBSP features are not robust to flat cluttered regions when neighbouring pixels are 

similar. 

 The overall system pipeline of the proposed background segmentation method is the 

combination of  

 an ALWBP feature descriptor and 

 a background model generation. 

 



Novel Akin-based Local Whitening Boolean Pattern 

(ALWBP) salient features 

 Existing well-performing and fast local feature descriptors- LBP and LSBP have the 

following disadvantages: 

 LBP only considers differences between the centre and each neighbouring pixels and 

 LSBP considers the similarity between the centre and each neighbouring pixel, but not the effect of 

neighbouring pixels on the current similarity between the considered centre and neighbouring pixel.  

 

 These methods are illumination invariant but not robust against low-frequency flat 

regions and smooth backgrounds or cluttered backgrounds, which has been discussed in 

the Problem Definition. 

 

 These feature descriptors have difficulties on flat cluttered regions due to the 

homogeneous neighbouring pixel intensity values. 
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 Suppose, we are extracting features on a thermal flat cluttered region block BϵRnxn (B 

consists of vectors biϵRn for 1<=i<=n) where the values of adjacent pixels are highly 

correlated. B is a 3x3 block and each column is a set of three pixel values. Each 3x1 

column vector is considered as feature vector bi. Therefore, block contains of three 

feature samples. 

 

 

 

   B = 

 

 

 

 It is necessary to pre-process each bi such that the correlation values are lower between 

adjacent pixels. A very well-known approach is to whiten each bi in the direction of pixel 

variations that are perpendicular to each other, such that they will have lesser correlation 

with unit variance. 

 



Whitening Over a Local Block B 
 

 To more formally identify the directions of b1, b2,…,bn; we compute the matrix 

covariance, namely, ∑ , as follows: 

 

 

 The eigenvalue decomposition (EVD) can be used to analyse the covariance matrix ∑of 

BϵRnxn  as follows: 

 

 

 where u1 is the principal vector, namely, the first eigenvector, of ∑; u2 is the 

 second eigenvector; and so on. These vectors are stacked to form an orthogonal 

 matrix, which is denoted as U. Additionally, let λ1, λ2,…, λn be the corresponding 

 eigenvalues; they form a diagonal matrix, which is denoted as D. To make our 

 input vectors bi less correlated with each other, we reflect the original data as 

 follows: 
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 Thus, b1
refl, b2

refl,…,bn
refl will be less correlated and will satisfy one of our whitening 

properties. Since U is an orthogonal matrix, it satisfies the property UTU=UUT=I. 

Therefore, the reflected vector bi
refl  back to original data bi can be computed via              

Ubi
refl=UUTbi=Ibi=bi . 

 The unit variance properties of input vectors  bi are imposed by rescaling each reflected 

vector bi
refl  as follows: 

 

 

 In the scaling step of Eq. (4), a small constant, namely, ɛ, is added to the eigenvalues to 

make the feature vectors numerically stable. Altogether, the whitening is defined as 

follows: 
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 The matrix Bw of flat cluttered region block B is white, namely, its vectors b1
w, b2

w,…,bn
w 

are less correlated and of unit variance. The covariance of matrix Bw satisfies the 

following identity property: 
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 We have obtained a local flat region of pixels via Eq. (6) that are less correlated, and used 

this region to generate Akin-based local Boolean pattern (ALWBP). 

 The term Akin indicates a most appropriate similar neighbouring pixel to a centre 

reference pixel that has more analogous characteristics than the other neighbouring 

pixels. 

 Unlike the traditional LBP and LBSP approaches, which calculates the difference and 

similarity, respectively, between two pixel values (a centre pixel and a neighbouring 

pixel), the ALWBP approach considers the effect of other neighbouring pixel values. This 

Akin-based concept is termed Akinity and is described in Fig. 4. 

 

 

ALWBP Descriptor 
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 Brc is a background intensity sample value at (x,y), which is the reference centre (rc) 

pixel. 

 This differs from the approaches in [SubSense, LOBSTER], where the reference centre 

pixel is imported from a previous frame intensity value. 

 We have altered it because in flat regions, selecting the previous frame reference pixel as 

centre does not yield substantial discriminative power. 

 The value of the reference centre from the background sample is selected randomly from  

N samples (regarding background samples, wait for Background Model Section). 
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Akinity: 

 While evaluating a ‘candidate Akin neighbouring pixel’ for the ‘centre pixel’, we consider 

other candidate Akin neighbouring pixels as competitors. Fig. 4 shows the Akinity, 

namely, a(ix,y,Brc,ix-1,y-1,p0) from centre pixel ix,y,Brc to a candidate Akin neighbouring pixel 

ix-1,y-1,p0. 

 Akin neighbouring pixel ix-1,y-1,p0 serves as the most similar candidate for centre pixel 

ix,y,Brc, while other candidate Akin neighbouring pixels i’ will compete for centre pixel 

ix,y,Brc. 

 Via this approach, we can analyse the similarity between two pixels more intensively than 

between other neighbouring pixels. 

 The Akinity ‘a’ at location (ix,y,Brc,ix-1,y-1,p0) can be calculated via the following formula: 
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Akinity: 

 How much higher is the similarity score of a candidate Akin neighbouring pixel ix-1,y-1,p0 

than those of the other competing candidate Akin neighbouring pixels i’? 

 

 To answer this, we have subtracted the largest of the similarities among the competing 

candidate Akin neighbouring pixels i’ with centre pixel ix,y,Brc. 

 

 At this point, we impose a condition: if the similarity between ix,y,Brc and ix-1,y-1,p0 is less 

than a similarity threshold, namely, Ts, (which is set to 0.2 in this paper), the value will be 

subtracted; otherwise it will be added. 

 

 Hence, if there is a more correlated value even after the whitening process, the similarity 

will be increased, and if there is a slightly uncorrelated value between centre and an Akin 

neighbouring pixel, the similarity will be decreased. 

 

 In a same manner, the Akinity will be estimated for remaining neighbouring pixels, 

namely,  p1,p2,…,p7.  
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Akinity: 

 Since the Akinity is estimated among a group of neighboring pixels with a centre point, in 

some circumstances, replicate values will be obtained, which is called oscillation of 

numerical values. 

 It is important for them to be damped to avoid numerical oscillation. 

 Each updated damped Akinity value is set to λ times its previous value plus (1-λ) times 

its current Akinity value, as follows: 
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 Now, the ALWBP descriptor Boolean string rule is presented as 

 

 

 

 where ap corresponds to the estimated Akinity value of the pth neighbour of the 

 pixel at (x,y) in the current frame and relative_tau = Exic is the new energy based 

 threshold value estimate for the current centre pixel at (x,y).  

 

 To capture the micro-texture in a smooth region, the spatial two-dimensional dependence 

matrix, which is known as the grey-level co-occurrence matrix (G), of thermal grey 

palette values is used with displacement vector d=(dx, dy), where dx=1 and dy=1. The 

feature that measures the randomness of grey-level distribution is the energy, namely, E, 

which is defined using the grey-level co-occurrence matrix as follows: 
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Algorithm Summary: Novel ALWBP 



Generating the Background Model via ALWBP (BM U ALWBP)  

 To generate our non-parametric background model, we represent each background pixel 

using both spatial-level and pixel-level features, namely, ALWBP Boolean patterns and 

thermal intensities. 

 

 To try to match each pixel from the current frame with background integer samples,  

 we first compare the thermal pixel intensity values using the taxicab geometry to a pixel wise dynamic 

threshold RT. 

 Second, we compare the ALWBP Boolean patterns over 3x3 blocks on the current frame with 

background ALWBP samples via a Hamming distance threshold, which is denoted as HT . 

 

 The methods [SubSense, LOBSTER] are typically not robust against flat cluttered 

backgrounds, whereas our method focuses on this issue, along with other background 

subtraction problems such as thermal intensity changes upon the first appearance of 

objects and dynamic backgrounds. 
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A. Pixel decision via samples of thermal intensity and ALWBP:  

 Inspired by [PBAS, VIBE], we develop a random sample consensus framework for 

modelling both long-term and short-term periodic events. 

 Each pixel intensity, namely, I(x,y), is modeled by an array of N recently observed 

background intensity samples, namely, Bsample_Int and ALWBP string samples, namely, 

Bsample_ALWBP. 

 

 

 

 

 For thermal scenes, N must be a small as possible to balance memory consumption and 

computational complexity (we set  #N=10 in our case). 

 Each of these samples is matched against its observation I(x,y) or ALWBP(x,y) at 

coordinate (x,y) on the current frame for classifying a pixel as foreground (F(x,y)=1) or 

background (F(x,y)=0) as follows: (P.T.O.) 
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A. Pixel decision via samples of thermal intensity and ALWBP:  

 

 

 

 

 

 F(x,y)=1 corresponds to a per-pixel output segmentation map 

                 RT(x,y) is the per-pixel distance threshold at pixel (x,y), which should be high for 

  highly dynamic areas and low for static areas 

    HT is a fixed Hamming distance threshold (we set #HT=3) 

  At last classification, Thresholdmin is the minimum number of matches with 

  background samples in both the thermal intensity and ALWBP pattern, 

  which is a fixed global parameter (we set #Thresholdmin=2) that 

  balances the noise resistance.  
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B. Per-pixel adaptation of the distance threshold (RT):  

 A dynamic distance threshold, namely, RT is defined per-pixel at coordinates (x,y). 

 

 For highly dynamic areas, RT(x,y) should be high to prevent incorrect classifications as 

foreground and it should be low for static areas. 

 

 In a video sequence, there can be regions with waving of a water layer or trees in the 

wind, which will provide higher background dynamics and result in incorrect 

classifications of foreground objects. 

 

 In addition, there can be regions with small to no changes, which provide low dynamic 

value. 

 

 Therefore, the background dynamics, namely, đmin(x,y), must be estimated, as inspired by 

PBAS. 
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B. Per-pixel adaptation of the distance threshold (RT):  

Estimation of Background Dynamics- 

 In addition to saving arrays of the N recently observed background thermal intensity 

samples and ALWBP samples in the background maintenance, as in Eq. (12) and (13), we 

create another array, namely, D(x,y) of minimum-distance samples between the current 

thermal pixel intensity and the background intensity samples as follows: 

 

 

 

 

 To measure the background dynamics at pixel coordinate (x,y), the average of these 

minimum distance samples is calculated as follows: 
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B. Per-pixel adaptation of the distance threshold (RT):  

 The dynamic adaptation of distance threshold RT(x,y) via this measurement of the 

background dynamics is expressed as follows: 

 

 

 where Rlr is a fixed regulated controller rate for the distance threshold (Rlr=0.02 in 

 our case). 

 In completely static regions or less dynamic background regions,  namely, 

 đmin(x,y)≈0, the value of RT(x,y) will slowly decrease. 

 In contrast, under  increasing background dynamics, the distance threshold, 

 namely, RT(x,y),  approaches the product value of Rlrxđmin(x,y), which provides 

 a robust, increasing  threshold value. 

 However, in dynamic regions, RT(x,y) initially slightly decreases  by a 

 factor of (1-Rlr) and subsequently rapidly increases by a factor of Rlr as the 

 value of  đmin(x,y) increases. 

 In above Fig., the decision threshold  is plotted. 
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C. Updating the Background Model:  

 To account for changes in the background, such as thermal intensity changes upon the 

first appearance of an object in the frame (as shown in Fig. 7), a waving water layer, and 

shaking trees, updating the background pixels in the background model, namely, 

Bsample_Int, Bsample_ALWBP, is essential. 

 

 We have updated our background model via a similar approach to that in [PBAS]. 

 

 A pixel at coordinate (x,y) is updated to one of the background samples if and only if the 

pixel is categorized as background, namely, F(x,y)=0. 

 

 Hence, foreground pixels will be excluded from this update process. 

 

 For a randomly selected index kϵ1,2,…,N, the corresponding background sample values, 

namely, BIntk(x,y) and BALWBPk(x,y), are replaced by the current intensity value, namely, 

I(x,y), and ALWBP pattern, namely, ALWBP(x,y), respectively. 
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C. Updating the Background Model:  

 At the same time, we also update a random sample that is selected from 8-neighbouring 

pixels: I(x’,y’) ϵ N(I(x,y)). 

 

 The background model at this neighbouring pixel is replaced by its current intensity 

value, namely, I(x’,y’), and pattern, namely, ALWBP(x’,y’). 

 

 Via this neighbouring pixel update process, wrongly classified foreground pixels are 

gradually incorporated into the background model, as shown in Fig. 8. 
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D. Per-pixel adaptation of the learning parameter (L):  

 Every pixel, whether foreground or background, that is incorporated into a background 

sample also depends upon the learning parameter, namely, L(x,y). A higher L(x,y) value 

indicates that the pixel at (x,y) is more likely to be incorporated into the background 

model. 

 According to the adaptation of the learning parameter L(x,y), pixels those pixels that are 

wrongly classified as foreground will be merged into background pixels. This strategy is 

formulated in Eq. (19) as follows: 

 

 

 where Llr is a learning rate (Llr=0.02 in our case). 

 The learning parameter of a pixel is decreases fast if the pixel belongs to the foreground, 

namely, if F(x,y)=1, or a plus low dynamic background and slowly decreased in the case 

of a highly dynamic background. As a result, an incorrectly classified pixel will slowly be 

identified as background pixel. 

 If a pixel belongs to the background, namely, if F(x,y)=0, the second term in Eq. (19) 

(after ‘+’) will increase the learning parameter value by Llr/đmin(x,y). The learning rate 

will increase based on the value of đmin(x,y). A larger value of đmin(x,y) will slowly 

increase the learning parameter value, namely, L(x,y), and small value of đmin(x,y) will 

rapidly increase it. 
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Algorithm Summary: BM U ALWBP 



Conclusion 
 We have described briefly our newly created night video dataset, namely, TU-VDN, for 

moving object detection in thermal infrared images. 

 

 The dataset consists of degraded atmospheric night outdoor scenes under low-light, dusty, 

rainy, and foggy conditions. 

 

 We also presented a video salient-feature-based background segmentation technique that 

uses both spatial features and thermal intensity for the robust investigation of thermal 

frames. 

 

 We summarize the findings regarding this proposed technique as follows:  

 It handles various key challenges in thermal outdoor scenes, such as dynamic background, flat cluttered 

background, and thermal intensity adjustment during the maiden appearance of a moving object in the 

video sequence. 

 In terms of accuracy, F1-score, and MCC, the results of the comparative experiments on the TU-VDN 

dataset has demonstrated the superior performance of our proposed method. 

 The results of our analysis on the CDnet-2014 dataset over the night, thermal, and badWeather category 

sequences have also demonstrated the superior performance of the approach in terms of MCC value and 

error rate. 

 

 

  

 


