Lesson Plan Of Mrinal Kanti Bhowmik

Name of the Subject: Design & Analysis of Algorithms Subject Code: CSE 901C TH

Topics	Contact Hours	Contact Occurred On	Remarks
Introduction: What is Algorithm? Algorithm and its	2		
specification. Time Complexity-I: Asymptotic Notation, Standard			
Notation and Common Functions, Asymptotic Analysis (Best,			
Worst, Average Case).			
Time Complexity-II: Different cases of Time Complexity of	4		
Binary Search and Linear Search, Bubble Sort, Quick Sort, Merge			
Sort, Tournament Sort, Bucket Sort or Radix Sort, Insertion Sort,			
Selection Sort.			
Greedy Algorithm: Activity Selection Problem, Elements of the	6		
Greedy Policy, Hoffman Coding, Task Scheduling Problem, Coin			
Changing Problem/Algorithm, Prim's Algorithm And Kruskal's			
Algorithm And Comparisons. Knapsack Problem. Scheduling with			
Minimizing Time in the System. Shortest Path Algorithm: Dijkstra Algorithm, Divide And	6		
Conquer Method: Multiplying large integers. Strassen Matrix	0		
Multiplication.			
Dynamic Programming: Elements of Dynamic Programming,	6		
Making Change, Knapsack Problem, Shortest Path (Floyd			
Algorithm), Matrix Chained Multiplication, Assembly Line			
Scheduling.			
Exploring Graphs: Introduction, Traversing Trees: Pre order,	4		
Post order Numbering. DFS, BFS, Acyclic Graphs. Backtracking:			
Knapsack Problem, Eight Queen's Problem Branch and Bound:			
Assignment Problem.			
Graph Algorithms: Single Source Shortest Path: Bellman Ford	4		
Algorithm, Dijkstra Algorithm. All Pairs Shortest Path: Short Path			
of Floyd Warshall Algorithm, Johnson's Algorithm.			
Computational Complexity: Introduction to NP completeness,	4		
The Classes P and NP, Polynomial Reduction, NP Cook's Therom			
Complete Problems NP-completeness; Redurndancy.			
Approximation algorithms; Randomized algorithms; Linear			
programming;			
Special topics: Geometric algorithms (range searching, convex	4		
hulls, segment intersections, closest pairs), Numerical algorithms			
(integer, matrix and polynomial multiplication, FFT, extended			
Euclid's algorithm, modular exponentiation, primality testing,			
cryptographic computations),			
Grand Total	40		

Consulted/ Prescribed Books:

- 1. Introduction to Algorithms: T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein (Prentice Hall of India(PHI) Private Limited, New Delhi)
- 2. Fundamentals of Algorithmics: G. Brassard and P. Bratley (The MIT Press; 3rd edition)
- 3. Algorithm Design: Foundations, Analysis and Internet Examples: R. Tamassia and M.T Goodrich (Wiley India Private Limited, New Delhi)
- 4. Algorithm Design: J. Kleinberg and E. Tardos (Pearson Education)
- 5. Fundamentals of Computer Algorithms: E. Horowitz and S. Sahani (Galgotia Publications, New Delhi)
- 6. Design and Analysis of Algorithms: S. Sridhar (Oxford University Press, New Delhi)
- 7. Electronic materials from internet.