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Te accurate prediction of cancer frommicroscopic biopsy images has always been amajor challenge formedical practitioners and
pathologists who manually observe the shape and structure of the cells from tissues under a microscope. Mathematical modelling
of cell proliferation helps to predict tumour sizes and optimizes the treatment procedure. Tis paper introduces a cell growth
estimation function that uncovers the growth behaviour of benign and malignant cells. To analyse the cellular level information
from tissue images, we propose a minimized cellular graph (MCG) development method. Te method extracts cells and produces
diferent features that are useful in classifying benign and malignant tissues. Te method’s graphical features enable a precise and
timely exploration of huge amounts of data and can help in making predictions and informed decisions. Tis paper introduces an
algorithm for constructing a minimized cellular graph which reduces the computational complexity. A comparative study is
performed based on the state-of-the-art classifers, SVM, decision tree, random forest, nearest neighbor, LDA, Naive Bayes, and
ANN. Te experimental data are obtained from the BreakHis dataset, which contains 2480 benign and 5429 malignant his-
topathological images. Te proposed technique achieves a 97.7% classifcation accuracy which is 7% higher than that of the other
graph feature-based classifcation methods. A comparative study reveals a performance improvement for breast cancer clas-
sifcation compared to the state-of-the-art techniques.

1. Introduction

In 2020, almost 19.3 million new cancer cases (without
considering nonmelanoma skin cancer) and nearly 10
million cancer deaths (without considering nonmelanoma
skin cancer) occurred. Breast cancer in females has sur-
passed lung cancer as the most often diagnosed cancer, with
approximately 2.3 million new cases (11.7%), after lung
cancer (11.4%), colorectal cancer (10.0%), prostate cancer
(7.3%), and stomach cancer (5.6%) [1]. According to the
American Cancer Society, a group of diseases specifed by
intractable growth and a spread of abnormal cells is termed
cancer, which can cause death if the spread is out of control
[2]. Normal cells mature in a very well-defned way, whereas

cancer cells do not have this well-defned characteristic [3].
Figure 1 shows the microscopic histopathological images of
breast tissues (benign and cancerous). Te main diference
between cancerous and normal cells is that normal cells go
through the apoptosis stage, which means that the cells die
after some time, but cancerous cells do not go through this
state, so they are alive until external therapy is given to them.

Te apoptosis stage in cancer cells is rare or very rare,
resulting in no death of the malignant cells [4]. Cancer is
a state of dynamic tumour growth [5]. Tumour evolution is
a process in which gene expression is modifed, causing
unusual cell behaviour.Tere are a variety of tumour growth
models that are important for predicting tumour growth
patterns. Estimation of tumour growth rates is a very
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important issue because it can help in constructing an ac-
curate tumour growth model. Te models can be used to
evaluate screening strategies and treatment protocols.

In [6], the authors proposed a model that modifes the
Viola–Jones model by adding segmentation tasks capa-
bilities.Te segmentation process is performed by scanning
ovarian and breast ultrasound images pixel by pixel uti-
lizing the local details of pixels. Te authors proposed
a computer-aided method to distinguish diferent types of
tumours from the breast and ovarian ultrasound images
[7]. Te authors in the work [8] demonstrated a novel
transfer learning method called DTL to overcome the
insufcient medical image problem. Te proposed ap-
proach works well in skin cancer and breast cancer his-
topathological images. In [9], the authors proposed
a method for the classifcation of benign or malignant
breast cancer from mammogram images. Te proposed
approach contains multifractal dimension (M-FD) to ex-
tract multiple features and a genetic algorithm to reduce
the size. Finally, the ANN was used to classify the features.
Te authors proposed modifed Xception model to resolve
the overftting problem and improve the classifcation
accuracy [10]. Te methods perform well for breast cancer
histopathological images. Diferent microscopy imaging
techniques construct the cell arrangement images and the
function-based characteristics of the biological system
frameworks, including cultured cells, tissues, and organs.
Tere are some approaches that can form a graph of cells
from a tissue image and compute graph theoretical features
to evaluate how the cells are distributed over the tissue
[11–20]. Te concept of cell-graph mining was introduced
by Bilgin in 2007 [14]. Tey presented hierarchical graphs,
where they obtained an 81.8% accuracy in the classifcation
of the breast cancer tissue. In another work [21] by Bilgin
et al., they presented a paradigm shift in the area of cell-
graph mining by incorporating the ECM information and
allowing multiple coloured cell graphs, each modelling
a diferent type of cell structuring, to coexist on the same
tissue.Tey demonstrated this method for bone tissues that
represent healthy, fractured, and cancerous tissues. Te
main fnding of the work was the dissimilarity between the
healthy, fractured, and cancerous tissues, which is obvious,
but the cancerous versus fractured tissue was not easily
distinguishable. To date, no work has demonstrated and
implemented cell growth functions to diferentiate between

the benign and malignant cells. In addition, this graphical
feature-based proposed technique is very novel for clas-
sifying benign and malignant cells from the BreakHis
dataset [22]. Many deep learning-based studies have been
performed to classify benign and malignant cells from the
BreakHis dataset [22]. Deep learning-based classifcation
features are hidden to the user, which is a major drawback
of this technique. In medical image analysis for fruitful
classifcation, the classifying features need to be sensitive
and transparent for comprehension by a pathologist.

Considering this signifcant research, the primary con-
tributions of this paper are as follows:

(1) First, in this paper, we estimate the growth rates of
normal and abnormal cells in the breast tissue. We
fnd the diference between both growth rates using
the growth estimation function. Te diference be-
tween functions explores the cell growth behaviour,
which is plotted graphically.

(2) Ten, the paper proposes minimized cellular graph
(MCG) method, which shows its efciency in dis-
tinguishing between benign and malignant breast
cancer cells. Te proposed MCG requires a low
amount of computational time. Te experiments are
carried out on the BreakHis dataset.

(3) Tird, the proposed framework for the classifcation
of benign and malignant breast cancer cells from the
histopathological images is compared with diferent
classifer performances on the BreakHis dataset. Our
proposed approach performs better than the existing
systems on the BreakHis dataset.

Te remainder of this paper is organized as follows: in
Section 2, we discuss our proposed system to generate
a minimized cell graph from a tissue image and graph
mining procedure. We explain the experimental results in
Section 3. We deliver a conclusion and a future perspective
for our research work in Section 4.

2. Methodology

2.1. Dataset. Te dataset [22] consists of 7909 histopatho-
logical biopsy sample images collected from 82 patients.
Tese samples were taken by the P&D Laboratory in Brazil
from January 2014 to December 2014. Te BreakHis dataset

(a) (b)

Figure 1: Microscopic histopathological images of breast tissues: (a) benign tissue and (b) cancerous tissue from BreakHis dataset.
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is divided into two classes, benign and malignant, of which
2480 are benign and 5429 are malignant tissue images. Te
BreakHis images were stored at four magnifcation levels
(40×, 100×, 200×, and 400×). Tis dataset is in .png format.

2.2. Model. Figure 2 illustrates the framework of our
proposed approach used for the growth estimation
function and the classifcation of breast histology images
for normal and abnormal cells. It comprises two major
tasks, one part is a normal and abnormal cell-growth
functions’ estimation and the other part is a classifca-
tion using MCG.

2.2.1. Growth Estimation Function for Normal and Abnormal
Cells. Assuming P cells in a unit area, a normal cell can
divide into Pn cells at time t. However, cells die in a mul-
ticellular organism in two ways:

(i) Tings that destroy cells (for instance toxic chem-
icals or physical injury) kill them; a process called
necrosis.

(ii) Tey are activated to undergo line-up cell death. Te
best-comprehended kind of modifed cell life end is
apoptosis.

Tese are the steps by which the number of cells in our
body stays in balance.

As shown in Figure 3, the left side of the fgure represents
the growth steps for normal cells in the apoptosis stage and
the right side of the fgure represents abnormal cell growth.
Te mathematical illustration, in the form of a fow, is
represented in the abovementioned fgure.

Let us assume that normal cells died in P cells at time t.
Ten, the total number of cells = (Pn − P).
2nd stage, again after t time, Pn cells divide into
(Pn∗ n) number of cells.
Ten, the total number of cells = (Pn2 − 2P).
.
.
.
After mth number of t times Pnm− 1, cells divide into
(Pnm− 1 ∗ n) number of cells. Ten, the total number
of cells
= (Pnm − mP).
At stage t= 0,
Φ (n) = P.
At stage t= t,
Φ (n) = Pn − P.
At stage t= 2t,
Φ (n) = (Pn2 − 2P).
.
.
.
At stage t=mt,

Φ (n) = (Pnm − mP).
Ten, in the case of abnormal cells,
At stage t= 0,
∧ (n) =P.
Here, P is the number of cells initially in a unit area and
t is the time interval instances.
Let abnormal cell growth be {n∗ n} times the number
of cells in the previous stage after interval t.
At stage t= t,
∧ (n) =Pn2.
At stage t= 2t,
∧ (n) =Pn4.
.
.
.
At stage t=mt,
∧ (n) =Pnm+2.
At stage t= 0, ∧ (n) –φ (n) = (P − P) = 0.
At stage t= t, ∧ (n) –φ (n) =Pn^ 2 − Pn+ P= Pn
(n − 1) + P.
At stage t= 2t, ∧ (n) –φ (n)
= Pn^ 4 − Pn^ 2 + 2P=Pn^ 2 (n^ 2 − 1) + 2P.
.
.
.
At stage t=mt,
∧ (n) − φ (n) = Pn^ (m+ 2) − Pn^m+mP
=Pn^m (n^ 2 − 1) +mP.
Let us assume, that at stage t=mt,
Diference between normal and cancerous cells is =D.
D= (∧ (n) –φ (n))
=(Pn^ (m+ 2) − Pn^m+mP)
=P (n^m (n^ 2 − 1) +m).

Te growth function of the normal and abnormal cells
illustrates the behaviour of cell growth for its entire life
cycle. Te estimated diference function shows the cell
growth diference at themth stage at time t. Te diference
will be incremented with time t, i.e., the growth rate will
increase.

Figure 4 shows the graphical property of the diference in
the cellular graph node between the normal and cancerous
tissues. For that purpose, we automatically extract cellular
graphs from the benign and malignant tissue images from
the BreakHis dataset.

Figures 5(b) and 4 show that the graph created from
the diference function and the graph created from the
cellular graph node count (extracted automatically)
possess very similar characteristics. Te growth rate es-
timation function shows the cell growth characteristics of
both the benign and malignant tissues. Te diference
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Figure 2: A schematic illustration of the proposed framework.
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Figure 3: Pictorial representation of the mathematical model for normal cell growth (a) and the mathematical model for cancerous cell growth (b).
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function explores the behaviour of cell growth, which is
also validated by the diference between the numbers of
cell counts from the dataset images.

2.3. Development of Minimized Cellular Graph (MCG).
Automatic cell extraction is a subpart of our proposed
minimized cellular graph generation, which is illustrated in
the next section. In this section, a minimized cell graph al-
gorithm is proposed. Figure 6 shows the block diagram of the
proposed system.Te purpose of the proposed algorithm is to
produce a minimized graph that reduces the time complexity
and achieves good classifcation accuracy (Algorithm1).

We need to extract the cell from the images using
segmentation. In statistics and machine learning (ML), k-
means clustering is a method for analysing the clusters,
which aims to separate n observations into k clusters in

which each observation belongs to the cluster with the
nearest mean. In this paper, we used the k-means algo-
rithm, which clusters the pixels from the images according
to their La ∗ b ∗ values. Unlike the RGB colour space, the
La ∗ b ∗ colour space is a uniform colour space. Te colour
and detail information are completely separate entities on
a tissue [15].

In a cell graph, the cells or cell clusters of a sample tissue
are the vertices. An edge is defned between a pair of cells or
cell clusters based on an assumption that has a biological
foundation (or hypothesis) [21]. Te cell graph approach
collects the details encoded in the tissue by capturing the
spatial distribution of the cells and their cluster information.
In our work, we present a novel computational model that
solely relies on the topological characteristics in the case of
cancerous cells in the tissue. Te complex dynamic nature
and self-organizing clusters of cancerous cells exhibit
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Figure 4: Graphical representation of the diference of numbers between normal and cancerous cells.
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Figure 5: (a) Graphical representation of mathematical equation for normal and cancerous cell growth (straight line is indicating normal
cell growth and the other one indicating abnormal growth) and (b) graphical representation of the proposed diference function between
normal and cancerous cells.
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Input:
A: RGB image with dimension m ∗ n
Output:
G: Minimized graph

(1) Start
(2) Convert the input RGB image into Gray scale image:

Im � A(:, :, 1) + A(:, : , 2) + A(:, :, 3)/3
(3) Apply K-means segmentation
(4) Obtained the segmented image is Seg

rk � 􏽐 Segk − G/
���������
􏽐 Segk − G

􏽰

p � min(r1, r2, ···, rk)

If
rk�� p
Seg� Segk

End
(5) Binarization:

If
Seg (:, :)> �t1& Seg (:, :)≤ t2�1
Else
Seg (:, :)� 0
Here, t1 and t2 are the threshold values.
End

(6) Extract connected component:

Cx �
cn: x€ cn if x €X

ᴓ Otherwise􏼨 􏼩

(7) Distance matrix creation from the extracted connected component:

ds �

�������������������

(x1 − y1)
2 − (x2 − y2)

2
􏽱

(8) Avgdist � 􏽐
n
i�1ds(i)/n

(9) If ds>Avgdist
Extract the nodes with their coordinates.

(10) G=Generate the graph with the extracted nodes
(11) End

ALGORITHM 1: Proposed algorithm: minimized cellular graph.

6 International Journal of Intelligent Systems



distinguishable graph properties that discriminate the
cancerous tissue from noncancerous tissues. Te graph
property metrics computed from the cell graphs of images,
i.e., one from benign cells and another from malignant cells,
are discriminated with a high accuracy [23].

Te following are the steps for graph minimization:

Step 1: connect component extraction:
Te number of components present in the graph is an
important topological invariant of the graph.
As the topological space (X), i.e., the image matrix
space is not connected, X has subtopological spaces,
and it makes sense to investigate the maximal con-
nected subspaces that contain more structural in-
formation. Given a point x∈X, we defne

C(x) � U C⊆X|C is connected andx ∈ C{ }4. (1)

In the abovementioned equation, we write the union of
all connected subspaces of X that contain point x
as C(x).
Each connected component is considered as a colony of
cells. In this proposed method, we extract the colony or
the connected component as one of the steps of graph
minimization. In biological instances, the distribution
of the counts of normal cells per unit area is less in
cancerous tissues. Hence, we concentrate on the con-
nected component containing more cells or, in other
words, a denser area for the minimization procedure.
Step 2: calculate the centroid:
A set of objects having the same properties is normally
presented as the centre of a cluster. Tus, it is desirable
to seek a centre that is intrinsically representative of the
diferent cell colonies.
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Figure 7: Systematic diagram for graph minimization.
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As the colony encloses similar types of cells, it is simpler
to take one node characteristic, the centroid of a colony,
i.e., connected component that has a similar charac-
teristic to the other cells of the colony. With the
centroid concept, we can use the surrounding features
of the centroid and the interaction between the cells of
the colony and the centroid.
Step 3: deduct the close centroids:
We hypothesize an association between two nodes, i.e.,
centroids of the connected component when the in-
terspace between them is less than a threshold. Te
Euclidean distance between two points, p and q, in dE is
given by

dE(p, q) �

�������������������

p1 − q1( 􏼁
2

+ p2 − q2( 􏼁
2

􏽱

. (2)

We compute all the possible distance metrics without
duplicating the nodes. We extract the mean metrics of the
Euclidean distances. Considering the mean value as the
threshold point, we deduct the nodes from the pairs that are
less than the threshold value. Later, we generate the cluster
centroid and compute the graph with the help of a Voronoi

diagram. Te main aim of this proposed work is to reduce
the processing time, considering fewer nodes without losing
any important characteristics.

Figure 7 presents the fow of the graph minimization
method with all the detailed steps.

2.3.1. Graphical Feature Extraction and Classifcation.
Features play a major role in classifcation. It is desirable to
extract fewer features with important discriminative in-
formation. We use a reduced set of graphical features for
classifcation while still providing an improved result. We
extract a small set of graph features that are signifcantly
discriminative, such as triangulation, the number of poly-
gons, convex hull area, and edges.

Te upper side graphical plots of Figure 8 show the
normal cell graph features for diferentiating between the
benign and malignant tissues. Te lower side of Figure 8
shows the MCG features that efciently and prominently
distinguish between benign and malignant cells.

To validate the discriminative property of these feature
sets, we conduct our experiments using diferent classifers.
Te classifers used are SVM (polynomial, Gaussian, and
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Figure 8: Discriminative features’ analysis of benign and malignant tissues: (a) cell graph feature analysis and (b) MCG feature analysis.
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Table 1: Comparative performance analysis of classifers using the BreakHis dataset after and before graph minimization.

Classifer Category F-measure Precision Recall Specifcity Sensitivity Accuracy (%)

SVM CG 0.4369 0.4737 0.4054 0.5495 0.4054 47.75
MCG 0.8829 0.8512 0.9279 0.8378 0.9279 88.29

SVM-polynomial CG 0.6744 0.9508 0.5225 0.9730 0.5225 74.77
MCG 0.9683 0.9727 0.9640 0.9730 0.9640 96.85

SVM-Gaussian CG 0.6780 0.9091 0.5404 0.9459 0.5404 74.32
MCG 0.9636 0.9725 0.9550 0.9730 0.9550 96.40

SVM-RBF CG 0.6845 0.8421 0.5766 0.8919 0.5766 73.42
MCG 0.9541 0.9720 0.9369 0.9730 0.9369 95.50

Decision tree CG 0.7064 0.7196 0.6937 0.7297 0.6937 71.17
MCG 0.9633 0.9813 0.9459 0.9820 0.9459 96.40

Random forest CG 0.7240 0.7273 0.7207 0.7297 0.7207 72.52
MCG 0.9593 0.9636 0.9550 0.9640 0.9550 95.95

Nearest neighbor CG 0.7163 0.7404 0.6937 0.7568 0.6937 72.52
MCG 0.9464 0.9381 0.9550 0.9369 0.9550 94.59

LDA CG 0.6569 0.7204 0.6036 0.7658 0.6036 68.47
MCG 0.8018 0.8208 0.7838 0.8288 0.7838 80.63

Naive Bayes ftrensemble CG 0.6915 0.8442 0.5856 0.8919 0.5856 73.87
MCG 0.9493 0.9717 0.9279 0.9730 0.9279 95.05
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(%)

SVM-
Polynom

ial (%)

SVM-
Gaussia
n (%)

SVM-
RBF
(%)

Cell Graph
features 47.75 74.77 74.32 73.42

MCG features 88.29 96.85 96.4 95.5

A
CC

U
RA

CY

CLASSIFIER

Cell Graph features
MCG features

(a)

SENSITIVITY SPECIFICTY ACCURACY

A
CC

U
RA

CY

MCG features
Cell Graph features

(b)

Decision Tree
(%)

Random Forest
(%)

Nearest
Neighbor (%) LDA (%) Naive Bayes

ftrensemble (%)
MCG features 96.4 95.95 94.59 80.63 95.05
Cell Graph features 71.17 72.52 72.52 68.47 73.87

AC
CU

RA
CY

CLASSIFIER

Cell Graph features
MCG features

(c)

Figure 9: Performance analysis of diferent classifers: (a) performance of SVM classifers, (b) performance of the artifcial neural network
(ANN), and (c) performance of other classifers.
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RBF), decision tree, and random forest, nearest neighbor,
LDA, Naive Bayes ftrensemble, and artifcial neural network
(ANN).

3. Results

To prove the signifcant efect of our proposed MCG fea-
tures, we conduct experiments on BreakHis histopatho-
logical breast tissue images. We use 200X breast tissue
images for this purpose. A performance analysis of the
diferent classifers is given in Table 1 and is graphically
plotted in Figure 9.

Te MCG-based classifcation accuracy with SVM,
SVM-polynomial, SVM-Gaussian, SVM-RBF, decision tree,
random forest, nearest neighbor, LDA, Naive Bayes
ftrensemble, and artifcial neural network (ANN) classifers
was 88.29%, 96.85%, 96.40%, 95.50%, 96.40%, 95.95%,
94.59%, 80.63%, 95.05%, and 97.7%, respectively. Te cell
graph feature-based classifcation accuracy with SVM, SVM-
polynomial, SVM-Gaussian, SVM-RBF, decision tree, ran-
dom forest, nearest neighbor, LDA, Naive Bayes ftren-
semble, and artifcial neural network (ANN) classifers was
47.75%, 74.77%, 74.32%, 71.17%, 72.52%, 68.47%, 73.87%,
and 75.20%, respectively.

From Tables 1 and 2, it is observed that the ANN
performs better than the other classifers based on the MCG
features. Te experimental results also reveal that the MCG
features give higher classifcation accuracy than the cell
graph (CG) features for all the classifers.

3.1. Computation Complexity Analysis. Analysing the
proposed model, we observe that the computational
complexity of our proposed system is O (∛n) for a total of
n pixels in an input image. In the case of CG, the
complexity is proportional to the total count of pixels of
an input image given to the system. Te computational
complexity is O (n).

Table 3 shows that the running time of the classifcation
system with CG features is 710.67 s and the running time of
the classifcation system with MCG features is 238.49 s.
Hence, we can say that our proposed method outperforms in
classifcation as well as in reducing the computation
complexity.

3.2. Comparative Study and Discussion. Tere are very few
works on CG-based classifcation systems. Te classifcation
accuracy of cancerous and noncancerous tissues using
graphical features was 81% Bilgin, Cagatay, et al., 2007 [14],
and 90% in Bilgin, Cemal Cagatay, et al., 2010 [19], whereas
a 97.7% accuracy was achieved using the MCG features.
Table 4 describes a comparative study with state-of-the-art
techniques.

Tere are some recent works for the classifcation of benign
and malignant cells using the BreakHis dataset with various
deep learning models (DCNN, CNN, RNN, Inception v3, and
ResHist). Table 5 shows the performance of recent deep
learning methods on the BreakHis dataset. Our proposed
method still gives an improved classifcation accuracy.

Table 2: Comparative performance analysis of ANN classifer.

Classifer Category Specifcity (%) Sensitivity (%) Accuracy (%)

ANN CG 67.94 92.42 75.20
MCG 98.2 97.3 97.7

Table 3: Runtime performance analysis.

Classifcation system Running time (s)
CG features 710.67
MCG features 238.49

Table 4: Performance analysis of classifers using graph-based features.

Descriptor Method Accuracy (%)

Graph-based approach
Bilgin et al. [14] 81.8
Bilgin et al. [19] 90
Proposed MCG 97.7

Table 5: Performance analysis of classifers using BreakHis dataset.

Dataset Method Accuracy (%)

BreakHis

DCNN (Wei et al. [24]) 97
CNN and RNN (Nahid et al. [24]) 91

Transfer learning-based Inception v3 (Matos et al. [26]) 91
ResHist (Gour et al. [27]) 92.52

IRv2-CXL (Abbasniya et al. [28]) 96.46
Proposed MCG 97.7
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During the experiments, we observed that our proposed
approach is very efective for benign and malignant classi-
fcations, as shown in the results section. On the other hand,
this approach can aid in the processing of the large quantities
of malignant histopathological tissue image data for di-
agnostic purposes with less time as our approach reduces the
complexity of the problem. Benign and malignant classif-
cations were performed with SVM, SVM-polynomial, SVM-
Gaussian, SVM-RBF, decision tree, random forest, nearest
neighbor, LDA, Naive Bayes ftrensemble, and artifcial
neural network (ANN). Compared with the existing clas-
sifcation techniques and graphical feature-based classif-
cation techniques, we observe that our approach improved
the classifcation accuracy and reduced the processing time.
For better generalization, which is a limitation, we need
more breast cancer histopathology datasets with multiclass
tissues to apply to our proposed technique.

 . Conclusion

Estimation of tumour growth rates is a very important issue
because it can aid in building an accurate tumour growth
model. Tose models can be used to evaluate screening
strategies and treatment protocols. In this paper, we generate
a diference growth estimation function that shows the
typical characteristics of cell growth. Tis function may be
useful in estimating tumour growth for patient survival
purposes. Mathematical modelling of cell proliferation helps
to predict the tumour size and to optimize treatment pro-
cedures.Te research contributions are noted as follows. We
estimate the growth rates of the normal and abnormal cells
of the breast tissue. We fnd the diference between both the
growth rates using the growth estimation function. Te
diference function explores the behaviour of cell growth
which is plotted graphically. Te minimized cellular graph
(MCG) method has been proposed, which showed its ef-
ciency in distinguishing between benign and malignant
breast cancer cells. Te proposed MCG uses less compu-
tational time. Te proposed framework for the classifcation
of benign and malignant breast cancer cells from histo-
pathological images has been compared with diferent
classifer performances on the BreakHis dataset. Our proposed
approach performs better than the existing systems. Te ad-
vantage of our approach is that it is computationally less
complex compared to the existing approaches. In addition, our
graph-based approaches precisely extract the local and global
structural features and relationship features, which are very
signifcant for classifcation tasks. Te limitations of our
proposed research work are as follows. Our experimental in-
vestigations only used one available online dataset. Due to the
limited availability of histopathological breast image datasets,
we did not conduct experiments on other datasets. Moreover,
we applied our proposed method to breast cancer histopath-
ological images.Te other types of cancer images have not been
considered in our work. Only a binary classifcation was
conducted, as the image dataset includes only benign and
malignant images. We are not able to observe the performance
of the multiclass classifcation system. Te growth rate was
estimated based on mathematical formulations; we did not

validate it clinically. In the future, a systemwill be implemented
for diferent kinds of cancerous histopathological images. We
plan to work on multiclass classifcation based on cancer se-
verity grades. Research improvements are possible if image
datasets are practically collected in association with hospitals
and clinicians [29, 30].
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