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Annotation and Benchmarking of a Video Dataset
under Degraded Complex Atmospheric Conditions
and Its Visibility Enhancement Analysis
for Moving Object Detection
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Abstract— Detection of moving objects in outdoor environ-
ments is an extremely researched topic. However, studies on mov-
ing object detection in complex atmospheric/weather conditions
are limited, primarily because of the absence of any relevant
benchmark dataset. To address this disparity, we introduce
a novel benchmark video dataset entitled “Extended Tripura
University Video Dataset (E-TUVD)” which is a diverse dataset
of complex atmospheric/weather conditions. Currently, E-TUVD
is the largest video dataset for moving object detection under
degraded atmospheric/weather conditions. The dataset comprises
147 video clips spanning 1-5 minutes in duration of each video
clips. Because of the requirement of evaluating any object
detection model, this study emphasizes on generation of ground-
truth images of salient moving objects on E-TUVD. Using this
dataset, we assessed the performance of several state-of-the-art
algorithms, considering both the ability to detect moving objects
and visibility enhancement under such complex conditions. The
method with the best performance was used to investigate the
effectiveness of visibility enhancement of atmospheric/weather
degraded image sequences for accurate moving object detection.
Results and analysis reveal that effective enhancement can
significantly improve the ability of detection algorithms under
degraded atmospheric/weather conditions to resemble the true
properties of moving objects in terms of pixel oriented binary
masks.

Index Terms— Atmospheric/weather conditions, video dataset,
meteorological information, ground-truth, moving object detec-
tion, visibility enhancement, performance evaluation.

I. INTRODUCTION

OVING object detection has been an active and mature
research area in numerous computer vision applications
because of the increasing demand of video surveillance for
security applications. Fundamentally, it is often considered to
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be a pre-processing step and a low level task in computer
vision applications, which is interconnected with high level
inference tasks such as object localization, tracking, and
classification. Its importance can be anticipated by visualizing
the numerous articles published till date on this topic. Each
moving object detection algorithm is designed to competently
address the inherent real-world challenges of indoor/outdoor
scenes, including illumination changes, dynamic backgrounds,
ghosting artifacts, shadows, camouflage effects, etc. [1]—
[3]. However, because outdoor scenes can be degraded by
different complex atmospheric/weather conditions, moving
object detection is more complicated under such conditions.
Generally, the North-Eastern (NE) states, along with other
states of India, share multiple international borders, because of
which, security plays a vital role in such states. Under extreme
atmospheric/weather conditions, outdoor scenes undergo from
degradation, and suspicious intruders may not be detected by
unaided human vision because of the high loss in contrast.
Consequently, electronic surveillance plays an important role
in detecting illegal threats to the state and for real-time
detection of suspicious activities.

In spite of the blooming research on improving the impacts
of predefined real-world challenges [2], [3], significant gaps
exist in the existing solutions for detection of moving objects
under atmospheric/weather degraded outdoor scenes. The
rapid development of complex object detection algorithms
originates from the available benchmark datasets that provides
a balanced coverage of the challenges representative of the
real-world [2]-[4]. Moreover, the availability of such dataset
facilitates fair comparisons between state-of-the-art methods.
Thus, the design of extensive datasets can provide a solid
source for moving object detection and can consistently guide
the development of this research field. In the last few decades,
large datasets have been designed to meet the increasing
demands for developing and benchmarking new models for
moving object detection [4]-[38]. Each of these datasets
is extensive in terms of amount or complexity. However,
video datasets for moving object detection that can provide a
balanced coverage of atmospheric/weather degraded outdoor
scenes are still lacking.

Due to the remarkable effort required for designing an
inclusive benchmark dataset to provide both pixel and loca-
tion oriented ground-truth labels and a balanced coverage of
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the representative atmospheric/weather challenges, previous
attempts to objectively evaluate moving object detection meth-
ods in such complex situations have been restricted to limited
partial assessments. Considering the importance of moving
object detection for the computer vision and video processing
communities, a video dataset under different atmospheric
conditions with unambiguously defined moving objects must
be created. Considering all these factors, the primary contri-
butions of this study are summarized below:

1) We describe the designing issues and capturing protocol
of a comprehensive real time benchmark video dataset
of outdoor scenes entitled as “Extended Tripura Uni-
versity Video Dataset (E-TUVD)”. The video dataset
involves outdoor scenes degraded by various adverse
atmospheric/weather conditions (such as fog, haze, dust,
rain and poor illumination). The research community
can utilize this dataset for testing and ranking of
the existing and new algorithms for moving object
detection in degraded atmospheric/weather conditions.
To the best of our knowledge, E-TUVD is currently
the largest moving object detection dataset for complex
atmospheric/weather conditions.

2) Moreover, we provide a procedure for generating
ground-truth images of suspected salient moving objects
in terms of pixel oriented object masks and location
oriented bounding boxes along with the object class in
the maximum number of extracted frames of the created
video dataset.

3) Based on this dataset, a comparison of thirty state-
of-the-art methods (both classical and deep learning
methods) for detection of moving objects in degraded
atmospheric/weather conditions is provided based on
pixel oriented simple matching coefficients which allow
us to evaluate and develop new approaches on moving
object detection in such adverse conditions.

4) We also provide a comparative analysis of twenty
two state-of-the-art visibility enhancement methods
(both classical and deep learning methods) based on
no-reference image based quality assessment metrics.
Furthermore, experiments were conducted to investi-
gate the influence of visibility enhancement for accu-
rate detection of moving objects in degraded complex
atmospheric/weather conditions to identify the remain-
ing challenges and provide the scope for future research.

Our goal is to offer a large and diverse benchmark dataset
in adverse atmospheric/weather conditions to the research
community to enable the design and evaluation of new mov-
ing object detection methods that can be readily used in
the many real-time applications for such complex situations.
A preliminary version of this paper has been previously
published in [40]. Compared with the conference version,
herein, we have extended the volume of the dataset and
included some more atmospheric/weather challenges of real-
world scenarios (i.e., rain and haze). In addition, in the present
version, we provide a more comprehensive review of the
existing dataset including experimental results for qualita-
tive benchmarking of E-TUVD with respect to classical and
deep learning based moving object detection and visibility

enhancement methods. This article also aims to determine
whether visibility enhancement of video sequences degraded
by atmospheric/weather conditions can improve the ability
of the detection method to accurately detect moving objects
automatically. E-TUVD is a property of Tripura University,
and details regarding this dataset are available in [41]. This
dataset can be accessed for non-commercial use on request
from [41].

The paper is organized as follows: In Section II, an overview
of the existing datasets for moving object detection and the
importance of our newly designed dataset in contrast to
previous datasets are described. Section III, elaborated
the designing issues and overall statistics of the created
video dataset under different atmospheric/weather conditions.
In Section IV, the procedure of generating ground-truth images
(in terms of moving object masks and bounding boxes) of
the salient moving objects in each of the extracted frames of
E-TUVD is described. In Section V, thirty widely used state-
of-the-art moving object detection techniques are analysed,
and the experimental results of applying these methods to our
dataset are detailed. Section VI compares the performance
of twenty two state-of-the-art visibility enhancement
techniques on E-TUVD for restoration of atmospheric/
weather degraded extracted frames (i.e., due to fog, haze and
dust). In Section VII, the effectiveness of visibility enhance-
ment for the accurate detection of moving objects degraded
by atmospheric/weather conditions is reported. Finally,
Section VIII concludes the paper.

II. RELATED WORK
A. Overview of Previous Datasets

Various datasets to evaluate the performance of moving
object detection algorithms have been rapidly developed.
Instead of elaborately discussing the large number of existing
datasets on moving object detection, key features of each
dataset based on a comparison of these datasets with our newly
designed dataset (i.e. E-TUVD) are highlighted in TABLE 1.

Importance of E-TUVD with respect to Previous
Datasets:

Although the previous datasets reviewed in TABLE I have
advanced the research in moving object detection, they have
several drawbacks:

1) First, the datasets reviewed in TABLE 1
[4]-[38] are designed to provide predefined real-world
challenges [2], [3], [39] (e.g., complex backgrounds,
shadows, occlusion, intermittent object motion, activity
of objects, etc.) in moving object detection or tracking
algorithms. Although CD.Net 2014 [4], BMC 2012 [5],
MarDCT [21], LASIESTA [25], and UWCD [38]
consider some weather conditions (such as sunny,
snowy, rain, cloudy and fog conditions), the number
and variety of videos of adverse atmospheric/weather
conditions are limited. Conversely, TU-VDN [33]
contains video clips of adverse weather conditions
(i.e., fog, dust, rain and low light), but this dataset
specially focuses on key challenges like flat cluttered
and dynamic backgrounds observed using static and
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Frame/ Video Based Object Detection Dat:
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TABLE I

REVIEW AND COMPARISON ON EXISTING MOVING OBJECT DETECTION DATASETS USED IN RESEARCH WORKS WITH OUR DATASET

Name of the Dataset

Key Characteristics

No. of
Videos/
Scenes

Dataset Details

Environmental

Conditions

Image
Format

Dataset

Type

Pixel Resolution

Total No.
of Frames

Ground-truth
Frames

CD.Net 2014 [4]

- Camera Jitter

- Dynamic Background

- Intermittent Object Motion
- Shadow, Thermal and Night

- Bad weather (Snow) and Low Frame Rate

- Turbulence, Pan-tilt and Turbulence

53

Indoor and
Outdoor

Jpg

V/T/C

320x240
to
720480

159279

97334 (PBL)

BMC2012 [5]

- Complex Background
- Climatic Conditions
- Shadow and Crowded

20

Outdoor

-png

v/C

640x480

29980

15980 (PBL)

PETS2009 [6]

- [llumination Change and Occlusion
- Crowded and Shadow
- Intermittent Object Motion

Outdoor

.avi

v/C

720x576
to
768x576

NP

NP (BB)

2R [7]

- Dynamic Background
- Bootstrapping
- Illumination Change

Indoor and
Outdoor

Jpg

v/C

176x144

37958

37958 (PBL)

ETISEO [8]

- Crowded
- Occlusion and Shadow
- [llumination Change

118

Indoor and
Outdoor

V/T/IC

640x480

153243

153243 (BB,
00)

VSSN 2006 [9]

- Cluttered Background
- [llumination Change
- Bootstrapping

Indoor and
Outdoor

Jrg

v/iC

400x400

1000

1000 (PBL)

DAVIS [10]

- Cluttered Background

- Motion Blur

- Occlusion and Camera shake
- Interacting objects

50

Outdoor

Jpg

v/C

1920x1080

3455

3455 (PBL)

Wallflower [11]

- Illumination change

- Background motion

- Camouflage Foreground Object
- Bootstrapping

Indoor and
Outdoor

.bmp

v/C

160x120

9917

7 (PBL)
i.e. 1 Frame Per
video

ViSal [12]

- Dynamic texture
- Interacting objects
- Crowded and Pose Variation

Indoor and
Outdoor

Jpg

V/IC/G

512x288

963

193 (PBL)

CAVIAR [13]

- [llumination Change
- Crowded and Shadow
- Intermittent Object Motion

80

Indoor

v/C

384x288

152000

152000 (BB)

SegTrack [14]

- Complex deformation
- Occlusion
- Interacting objects

Outdoor

.png

viC

320%240
to
414x352

244

244 (PBL)

SegTrack V2 [15]

- Appearance change

- Complex deformation

- Motion blur and Occlusion
- Interacting objects

Outdoor

-png

viC

259x327
to
640x360

976

976 (PBL)

FBMS [16]

- Occlusion
- [llumination Change
- Background motion

59

Indoor and
Outdoor

Jpg

e

960x540

13860

720 (PBL)

VOS [17]

- Complexity of foreground
- Background motion

200

Indoor and
Outdoor

v/C

800x800

116103

7467 (PBL)

Fish4Knowledge [18]

- Blurred and Crowded

- Complex background

- Luminosity Change

- Camouflage Foreground Object
- Hybrid of all above

Underwater

.avi

v/iC

320%240

NP

3500 (PBL) i.c.
250 frames per
video

ViSOR [19]

- [llumination Change

- Intermittent Object Motion

- Shadow

- Multiple Objects and Occlusion

623

Indoor and
Outdoor

v/C

704x576

NP

1 frame per
video (BB)

BEHAVE [20]

- Groups Interacting

- Multiple Objects

- Occlusion

- Intermittent Object Motion

Outdoor

wmyv

v/C

640480

83545

76800 (BB)

MarDCT [21]

- Complex Background
- Blur and Haze
- Occlusion

20

Outdoor

.m4v/.avi

V/T/C

704x576

NP

20 (PBL)

i-LIDS [22]

- Abandoned Baggage detection
- Parked Vehicle detection

- Doorway Surveillance

- Sterile Zone monitoring

Indoor

-png

v/C

64x128

NP

Not labeled

SBM-RGBD [23]

- Bootstrapping

- Camouflage and Illumination Change
- Intermittent Object Motion

- Out of sensors and Shadow

33

Indoor

-png

V/C/D

640x480

15000

1080 (PBL)

SBI2015 [24]

- Shadow and Occlusion
- Camera Jitter
- Dynamic Background

Indoor and
Outdoor

v/C

200x164

to
2272x1704

8548

14 (BG)

LASIESTA [25]

- Camouflage and Occlusions

- Illumination Changes and Bootstrapping
- Camera motion and Camera Jitter

- Weather (Sunny; Snow; Rain; Cloudy)

48

Indoor and
Outdoor

.bmp

v/C

352x288

18725

18725 (PBL)

E-TUVD
[Our Dataset]
(Still Growing)

- Weather Challenges (Fog; Haze; Dust;
Rain; Poor Illumination; Clear Day)

- Background Challenges

- Other Real World Challenges

147

Outdoor

.mov

v/C

1920x1080

793800
(Approx.)

1 frame per 5
frames (PBL,
BB, OC)

PBL- Pixel Based Labeling; BB- Bounding Box; OC- Object Class; BG- Background; SM- Shadow Mask; V- Visual; T-Thermal; C-Color; D- Depth; G- Gray; NP- Not Provided
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1.

Frame/ Video Based Object Detection Dat

TABLE I
(Continued.) REVIEW AND COMPARISON ON EXISTING MOVING OBJECT DETECTION DATASETS USED IN RESEARCH WORKS WITH OUR DATASET

No. of Dataset Details Total No Ground-truth
Name of the Dataset Key Characteristics Videos/ Environmental Image Dataset Pixel Resolution i
i of Frames Frames
Scenes Condition Format Type
UCSD [26] - Dynamic Background 232x152
- Motion Blur 18 Outdoor jrg VIG to 1927 886 (PBL)
468%348
ATON [27] - Illumination Changes and Blur Indoor and .
- Shadow and Multiile Objects 3 Outdoor a vic 320240 NP 113 (PBL)
LIMU [28] - Illumination Changes and Blur Indoor and
- Shadow and Crowded 8 Jpg v/C 320%240 37801 2257 (PBL)
X Outdoor
- Occlusion
SZTAKI [29] - Illumination Changes Indoor and .
- Shadow and Multiile Objects 3 Outdoor Jpe vic 320-240 8ol 861 (PBL, SM)
VIVID [30] - Camouflage and Shadow 1633 (PBL.
- Occlusion and Crowded 9 Outdoor Jjpg V/T/C 640x480 16274 BB) ?
- Intermittent Object Motion
CAMO-UOW [31] - Camouflage and Shadow Indoor and 1600x1200
- Multiple Objects 10 Outdoor Jpg V/C/G to 3517 3517 (PBL)
1920x1080
GTFD [32] - Intermittent Object Motion Indoor and
- Shadow and Thermal Crossover 25 Outdoor .png V/T/IC 384x228 1067 1067 (PBL)
- Cluttered Background and Dynamic Scene
TU-VDN [33] - Cluttered and Dynamic Background
- Weather Challenges (Fog; Dust; 60 Outdoor .mov T/G 640x480 138230 22030 (PBL)
Rain; Low Light)
REMOTE SCENE IR - Camouflage and Video Noise
[34] - Dynamic Background and Camera Jitter 12 Outdoor .bmp T/G 640%x512 1263 1263 (PBL)
- Ghost Artifacts
GSM [35] - Dynamic Background 544x135
- Illumination Changes and Bootstrapping 7 Indoor .png V/C/D to 3361 87 (PBL)
- Camouflage and Shadow 552x136
SBMnet [36] - Intermittent Object Motion ) 360240
- Clutt:.:rcd.Background and Camera Jitter 79 Indoor and ipg v/C © 73357 19 (BG)
- Illumination Changes Outdoor
. 800x600
- Dynamic Background
KINDERGARTEN [37] - Shadows and Illumination Changes Indoor and
- Intermittent Object Motion 100 .avi v/iC 352x288 NP NP
X Outdoor
- Camouflage and Noise
UWCD [38] - Illumination Changes
- Dynamic Background and Shadow 5 Underwater .png v/C 1920x1080 5507 500 (PBL)
- Camouflage and Bad weather (Snow)
E-TUVD - Weather Challenges (Fog; Haze; Dust; 1 frame per 5
[01.1r Datas.et] Rain; Poor Illumination; Clear Day) 147 Outdoor mov v/C 1920%1080 793800 frames (PBL,
(Still Growing) - Background Challenges (Approx.) BB, OC)

- Other Real World Challenges

PBL- Pixel Based Labeling; BB- Bounding Box; OC- Object Class; BG- Background; SM- Shadow Mask; V- Visual; T-Thermal; C-Color; D- Depth; G- Gray; NP- Not Provided

2)

motion cameras. This is because all video clips of
TU-VDN are recorded with a far-wave infrared sensor
at night time. In addition, because wavelengths in the
far-infrared region exceed those in other infrared wave
bands, impact of atmospheric particles on far-infrared
waves is relatively insignificant. Therefore, such videos
may not be pragmatic in real-world outdoor scenarios
and may cause over-fitting of the moving object
detection methods because moving objects detection
in outdoor environments are mainly susceptible to
atmospheric/weather effects. In comparison, our newly
designed video dataset specially focuses on various
adverse atmospheric/ weather challenges, including the
above mentioned predefined challenges [2], [3], [39] of
moving object detection for the evaluation of standard
baseline models under such complex situations.

Second, ground-truth annotation of foreground mov-
ing objects in previous datasets is provided either in
terms of bounding boxes or object masks. Thus these
datasets focus on either tracking or detection algorithms.
Although foreground moving objects in some datasets
are annotated in the form of binary object masks, they
are often manually annotated by one subject, resulting in

strong subjective bias with respect to performance eval-
uation of the detection models. In our newly designed
dataset, we first localized the salient moving objects
using rectangular bounding boxes, and then, labeled
pixel wise annotation of the moving objects present in
the bounding boxes using multiple annotators such that
the resultant ground-truth image sequences become the
most probable joint agreement of all annotators.

3) Third, these datasets are less significant than the
proposed dataset for traditional Convolution Neural
Networks (CNNs) because the number of frames and
annotated frames in most of the previous dataset men-
tioned in TABLE I are not sufficiently large for training
traditional deep learning models. To cope up with such
problems, manual labeling (bounding boxes and binary
object masks) of the maximum number of frames in each
of the video clips of E-TUVD dataset are provided with
the E-TUVD.

In summary, the existing datasets are not sufficient for
benchmarking the performance of traditional moving object
detection methods in degraded complex atmospheric/weather
conditions because of the less variety of available videos in
such degraded conditions as well as the ambiguous annotation
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of salient moving objects. For advance this area, E-TUVD
provides a balanced coverage of real-world outdoor scenar-
ios in degraded atmospheric/weather conditions and contains
ground-truth images of salient moving objects, which are
unambiguously defined and annotated.

B. Contributive Features of E-TUVD

The main contributive features of the designed Extended
Tripura University Video Dataset (E-TUVD) are:

1) The dataset comprises video sequences of moving
objects (especially vehicles, pedestrians and animals)
under various atmospheric/weather degraded challenges
captured from different security and surveillance zones
of Tripura.

2) The dataset contains 147 videos including 29 videos in
clear day conditions, 22 videos in poor illumination con-
ditions, 34 videos in fog conditions, 12 videos in haze
conditions, 23 videos in dust conditions, and 27 videos
in rain conditions captured under static and dynamic
background conditions.

3) Along with atmospheric/weather challenges, the dataset
also contains various representative challenges of real-
world moving object detection i.e., intermittent object
motion, camera jitter, shadows and overlap of two mov-
ing objects.

4) Each frame of the E-TUVD contains multiple types of
moving objects, e.g., pedestrians, bikers, bicyclists, cars,
buses, trucks, autos, rickshaws, and animals (i.e., dogs,
cows, and cats). In addition, the scenes were captured
mostly in urban areas, which are subjected to larger sur-
face variations because of the presence of objects such
as trees, houses, warehouses, office buildings, streets,
and residents.

5) For each video clip in the dataset, meteorological data
regarding atmospheric/weather information (i.e., dew
point, temperature, humidity, etc.) on the capturing
day were obtained from meteorological department of
Tripura State and are also provided.

6) For all the captured video sequences, ground-truth
images of salient moving objects are annotated in terms
of binary object masks and object fixations (i.e., location
oriented bounding boxes) to alleviate ambiguities in
defining and annotating salient moving objects and are
provided along with this dataset.

All these features of E-TUVD reflect its significance

in the moving object detection from various real-world
atmospheric/weather degraded outdoor scenes.

III. DESIGNING ISSUES AND OVERALL STATISTICS OF
E-TUVD IN DEGRADED ATMOSPHERIC/
WEATHER CONDITIONS

Generally, outdoor images often suffer from low contrast
and poor visibility information because the light reflected from
the object of interest (in our case, the moving objects) is
attenuated in air and further blends with the atmospheric light
scattered by some aerosols or water-droplets before it reaches
the camera. Inclement weather has remained a challenge for

Image Acquisition Factors

|
Camera Specifications:
= Model Name: Nikon D5100
® Lens: 18-55 mm
* Shutter speed: 1/125-1/200
= Aperture: £5.6-£8
= Resolution: 19201080 pixels

Outdoor Environmental Conditions:
= Temperature: 5°C to 30°C

Camera Positioning:
= Distance: 100 M to 3 KM
= Alignment: 90°
= Camera Positioning: Rigidly mounted
on a tripod stand for static condition
and on a moving vehicle for dynamic
condition

= Humidity: 40% to 100%

= Dew point: 5°C to 15°C

* Wind speed Range: Imph to 3.5 mph
= Visibility Range: 0 KM to 4 KM

Fig. 1. Acquisition factors of E-TUVD [40].

many computer vision applications because the performance
of imaging devices drastically reduces under such conditions.
In this section, we elaborate the capturing conditions, acqui-
sition set-up, overall statistics, and naming conventions of the
E-TUVD under atmospheric or weather degraded conditions.

A. Dataset Capturing Conditions

Images in an outdoor environment are mainly susceptible
to two factors: Weather and Illumination. The weather effect
is due to the presence of fog or other associated particles
suspended in air that scatter light in the atmosphere [42].
In contrast, the illumination effect in an outdoor environment
mainly occurs because of variations in the intensity of sunlight
at different times of the day, i.e., specular reflection [43]. Such
conditions alter the key characteristics (i.e., intensity, color,
polarization and coherence) of sunlight because of scattering
of light by atmospheric particles. The atmospheric or weather
conditions considered in our E-TUVD dataset are: Fog Con-
ditions, Haze Conditions, Dust Conditions, Rain Conditions
and Poor Illumination Conditions. In addition to the above
mentioned five atmospheric or weather conditions, E-TUVD
also contains video clips of clear days where horizontal sun-
light casts long shadows and gives subjects a warm glow with
high contrast scenes. Considerable effort was invested for mea-
suring the physical properties of these atmospheric/weather
conditions (i.e., types and sizes of particles involved and their
concentrations in space) [43].

B. Camera Set-up for Dataset Acquisition

To maintain uniformity and collect valuable information
for our research work, the effects of various factors con-
sidered during data acquisition to facilitate the observation
of atmospheric/weather on scene appearances are shown
in Fig. 1.

The acquisition of the video dataset under the
atmospheric/weather conditions involved of three components.
The first component is the camera specification. Herein, video
clips for the E-TUVD were captured using a Nikon
D5100 camera (Thailand) which had a focal length of
18-55 mm with a horizontal field-of-view, zoom ratio of
3.00x and aperture range of f/5.6-f/8. The video resolution
was 1920 x 1080 pixels and the video images were not
stabilized during acquisition. The second component is
the outdoor environment condition. Depending on different
atmospheric conditions, the outdoor temperature during data
acquisition varied from 5°C to 30°C, humidity was between
40% and 100%, the dew point ranged from 5°C to 15°C,
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ATMOSPHERE

Camera Setup for
|¢——— bynamic Background —

Atmospheric Particles

Scattering

Camera Setup for
Static Backeround

Fig. 2. Overall acquisition setup for dataset capturing of E-TUVD under degraded atmospheric/weather conditions.

Fig. 3.

Sample image frames of E-TUVD under different Atmospheric/Weather conditions: row (1) Fog conditions; row (2) Haze conditions; row (3) Dust

conditions; row (4) Rain conditions; row (5) Poor Illumination conditions; row (6) Clear Day conditions.

the wind speed varied from 1 mph to 3.5 mph, and the
visibility remained approximately between 0 KM to 4 KM.
The third component is positioning the camera with respect
to the targeted objects. During data acquisition, the alignment
of the camera (i.e., line of sight) with respect to the moving
objects was horizontal over path lengths of several kilometers
(i.e., approximately 3 KM). The camera was positioned on a
tripod stand with vertical height adjustment and an average
elevation of 5 feet from the ground level. The video clips of
the E-TUVD were captured under two background conditions
(i.e., static and dynamic background). For capturing the
video clips in a static background condition, the camera was
kept fixed with respect to the moving objects by mounting
the camera on a tripod stand (in this case, the background
is static with respect to the moving objects). Conversely,
to capture video clips under dynamic background conditions,
the video clips were captured by mounting the camera on a
moving vehicle, and the speed of the vehicle was maintained
between 20 and 30 KM/H. In this case, both the objects and

the background are moved simultaneously. The jagged and
diagrammatic representation of the complete set-up for data
acquisition is displayed in Fig. 2.

The video clips of the E-TUVD were collected from dif-
ferent locations of Tripura, which is a North Eastern State of
India, and were captured from the Tripura University Campus
and different crossings of Agartala city as per availability of
data under the aforementioned degraded atmospheric/weather
conditions throughout the year. Some of the sample frames of
the E-TUVD depicting different adverse atmospheric/weather
conditions are shown in Fig. 3. The image frames are from
the beginning, middle and end of the video sequences for
visualization.

C. Dataset Statistics

According to the above mentioned acquisition factors, cur-
rently, E-TUVD contains 147 video clips, depicting outdoor
scenes with moving objects that were captured under differ-
ent scenarios and include various challenges under different
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TABLE 11
DISTRIBUTION OF E-TUVD IN DIFFERENT ATMOSPHERIC/WEATHER CONDITIONS

Atmospheric/ Weather Conditions

Image Camera Background . Poor Total
98 Fog Haze Dust Rain s Clear Day .
T Model t \%
ype ode Condition Conditions Conditions Conditions Conditions Iguml{lz'\tlon Conditions ideos
onditions
. Nikon Static 24 7 14 15 15 18 93
Visual D5100
S Dynamic 10 5 9 12 7 11 54
Total Number of Videos 34 12 23 27 22 29 147
**As in, May 2019 (Dataset is still growing)
atmospheric/weather conditions (as shown in Fig. 3). Each TABLE 1II
video clip was 1 to 5 minutes long with a frame rate of 30 fps CODES USED FOR NAMING E-TUVD
(Frame per Secon@). The overall statistics of the created Atmospheric Condition __ Background Condition ___ Capturing Day
dataset are shown in TABLE II. The key challenges of the Condition Codes Type Codes Day Codes
designed video dataset are broadly categorized as follows: Fog F Dayl DI
. . Haze H Day2 D2
o Background Challenges: The E-TUVD video clips  Dust D Static S Day3 D3
depict outdoor scenes either under static or dynamic ?gg‘; lumination 11}1 Dynamic D Day4 D4
background conditions. Handling background dynamics  ciear Day cD Dayn Dn

in which the background is continuously moving with
respect to the moving objects is a challenging task.
The dataset contains 93 video clips under the static
background conditions and 54 video clips under dynamic
background conditions.

« Atmospheric/Weather Challenges: The dataset includes
urban scenes with buildings, trees, sky, vehicles, and
pedestrians with ranges from approximately 100 meters to
3 KM. The dataset contains 22 video clips under the poor
illumination conditions, 34 video clips in fog conditions,
12 video clips in haze conditions, 23 video clips in
dust conditions, and 27 video clips in rain conditions,
as shown in Fig. 3. Moreover, the dataset also contains
29 video clips on a clear day to facilitate the comparison
of complex moving object detection models under both
clear conditions and atmospherically degraded conditions.

o Other Challenges: In addition to these two major chal-
lenges, the dataset also contains scenes with multiple
moving objects in a single frame, overlapping or occlud-
ing of the moving objects in a single frame, shadow,
and intermittent motions of objects. Although camou-
flage or poorly textured and camera jitter images are
some of the major issues considered for moving object
detection, we did not consider them in the categorical
challenges of the E-TUVD because almost all the real-
world video sequences contain some level of camouflage
and camera jitter effect.

Each of these subsets was very challenging and could be used
to test benchmark moving object detection/tracking algorithms
under realistic scenarios.

D. Naming Convention

Each category of video clips in the E-TUVD was named to
ensure that the dataset could be understood during analysis.
Different codes were assigned to the different atmospheric
condition, different dates on which data were captured, and
different types of background. Using these codes, the dataset
were named in the format Capturing-Day_Atmospheric-
Condition_ Background-Type_Video-ID.mov. All the assigned

codes for each component of the name are illustrated
in Table III. Using the above naming convention, every video
clip in the dataset acquired a distinct identity. Based on
the codes provided in Table III, the image name “DI1_F_
S_0l1.mov” indicates that the video is Video_ID 01, which
is a static background video captured under fog conditions on
the first day.

E. Meteorological Information

Analyzing outdoor scenes under extreme atmospheric/
weather degraded conditions requires metrological data from
the capturing location or in the area adjacent to the captur-
ing location. According to the World Meteorological Orga-
nization (WMO) network, atmospheric/weather phenomena
are depicted and measured using different variables of the
earth’s atmosphere; i.e., Temperature (°C), Humidity (%),
Dew Point (°C), Wind Speed (KM/H), Wind Direction,
Atmospheric Pressure (mbar) and Visibility (KM). Each video
clip of the E-TUVD contains useful ground-truth meteoro-
logical information related to these atmospheric variables/
parameters obtained from the Regional Meteorological Depart-
ment of Tripura, which is provided with the dataset.

IV. GROUND-TRUTH GENERATION OF SALIENT
MOVING OBJECTS ON THE E-TUVD DATASET

By generating ground-truth images of salient moving
objects, the effectiveness of moving object detection/tracking
algorithms can be verified. The most common and efficient
method for generating ground-truth images is using manual
annotation. However, manual annotation of accurate ground-
truth data that contain the exact area of salient moving objects
often results in uncertainty and strongly subjective bias. Thus,
generating uncontroversial ground-truth images that provides
the maximum information regarding salient moving objects
in each frame is one of the most tedious and challenging
tasks. In our study, we collected two types of ground-truth
data, moving object fixation using rectangular bounding boxes
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and pixel oriented binary moving object masks to mitigate
the indistinctness in defining and annotating salient moving
objects.

A. Rectangular Bounding Box Based Moving Object Fixation

Currently, the dataset contains 147 video clips 1-5 minutes
each (30 fps). Therefore, it is very difficult and time consum-
ing for a single person to accurately annotate ground-truth
images of salient moving objects for the captured videos.
Moreover, manual annotation of salient moving objects in
videos of complex outdoor scenes is a difficult and challenging
task. This is because several candidate objects may exist
and different annotators may be biased in determining which
objects are “salient” or “moving”. Therefore, for consistent
annotation of the E-TUVD, a more general definition of
“salient moving objects” in a video is essential to guide the
manual annotation processes. First, to address the problem
of “what are the most likely salient objects present on our
E-TUVD dataset”, we visually analyzed all video clips of the
E-TUVD and predefined the classes of salient objects to be
annotated. They are — Pedestrian, Biker, Bicyclist, Car, Bus,
Truck, Auto, Rickshaw and Animal (i.e., Dog, Cow and Cat).
Second, it is particularly difficult to reliably identify the actual
number of moving objects in a multi object frame because all
objects may not move simultaneously. In addition, the salient
moving objects may become immobile in the middle of a
video clip (i.e., intermittent object motion). To approximate the
salient objects that are “moving” (i.e., salient moving objects)
well in the video frames of the E-TUVD, the background
model was estimated using a previously developed model [44]
and compared with current images. This eased the task of
annotators to identify the regions of interest (i.e., moving
objects) in a frame. Third, assigning the classes of salient
moving objects in a multi object frame is difficult because
in some situations, a small part of a salient moving object
may be visible or may be occluded by some other candidate
objects. Under such circumstances, annotators were instructed
to carefully observe the previous or next successive frames
and assign the object to one of the aforementioned predefined
classes. Depending on this information, manual fixation of the
salient moving objects in the form of a rectangular box was
performed, and its identity and detailed spatial and temporal
information were provided.

To implement the protocol, five members of the research
laboratory were selected and trained to maintain consistency
in ground-truth annotation. They were provided a set of
annotation guidelines, consisting of what to annotate, what
are the class labels and how to handle occlusions. The six
categories of video clips from E-TUVD (i.e., fog, haze,
dust, rain, poor illumination and clear day) were equally
distributed among these five individuals. Each annotator was
asked to free-view all the extracted frames of the video clips
provided to them and create a rectangular boxes for each
salient moving objects present in one frame per five frames
using the Labellmg graphical image annotation tool [45]. This
graphical user interface based tool is freely available [45].
The rectangular bounding boxes were created by fixing the
coordinates of two points (i.e., recommended for PascalVOC)

of each salient moving object in one frame per five frames and
defining the class of these bounding boxes. These two points
are: the upper most left corners (xmin, ymin) and the lower
most right corners (xmax, ymax). Along with bounding box
information (i.e. the coordinates of the two points) outlining
the salient moving objects, temporal information related to
Frame_ID, Number_of_Objects, and Object_Class as present
in the corresponding frames for each video clip of E-TUVD
was also maintained in an .xml file and provided with the
dataset. During the entire process, annotators were periodically
observed to ensure they followed the guidelines.

B. Generation of Binary Moving Object Masks

To generate accurate and uncontroversial ground-truth
images of the salient moving objects in the form of binary
moving object masks, the most suitable method is to combine
the manually generated binary moving object masks of all
subjects so that the resultant ground-truth object mask is most
likely to each of the annotator segmentation. Considering this
aspect, one of the most well-known semi-automated tool, Tool
for Semiautomatic Labeling (TSLAB) [46], was used to gener-
ate the binary moving object masks. This is a freely available
graphical user interface based tool [47]. To implement the
protocol, five members of the research laboratory who did
not participate in annotating the bounding boxes were selected
and trained for binary object mask generation. Similar to the
previous subsection, the six categories of video clips from the
E-TUVD were equally distributed among these five annotators.
Along with the video clips, bounding box related information
was also provided to avoid the problem of determining the
salient moving objects. Using TSLAB [47], annotators were
asked to manually draw the contours of each salient moving
object present in the respective frame in the VMO (Visible
Moving Object) layer selection mode. Consequently, the area
inside the contours was considered as moving (i.e., each of
the salient moving objects was annotated as a whole based
on a semantic concept). Thus, in each video clip of the
E-TUVD, ground-truth images of one frame per five frames
were produced in a .bmp format with the following two labels:
Static Pixels: Assigned the binary values of 0 and Moving
Pixels: Assigned binary values of 1.

After generating the ground-truth images (i.e., the binary
moving object masks), the video clips of the E-TUVD
along with the corresponding bounding box information were
exchanged among the workers five times to generate five
reference ground-truth images corresponding to each frame
(one frame per five frames) of the E-TUVD video clips. Once
the five software based reference ground-truth images were
obtained, the maximum voting policy was used to combine
the results of these five ground-truth images. In this method,
a threshold value T (in our case T=3) was set depending on
the number of reference ground-truth images, and a ground-
truth image was built as the maximum likelihood estimation.
This can be mathematically represented as follows:

K
- 1 if S RGTW(ij) > T
GT(ij) = Z ! (1)

0 Otherwise
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where RGT(i,j) is the k™ reference ground-truth image. The
resultant maximum voting policy based binary moving object
masks of one frame per five frames for each video clips of
E-TUVD are provided in the .bmp format with the dataset.

V. DETECTION OF MOVING OBJECTS USING THE
STATE-OF-THE-ART METHODS IN DEGRADED
ATMOSPHERIC/WEATHER OUTDOOR
CONDITIONS ON E-TUVD

A. State-of-the-Art Methods Tested

Detection of moving objects has been extensively stud-
ied since the 1990’s; consequently, numerous new ideas
have been proposed for high-quality detections of complex
scenarios with the lowest misdetection rate. The simplest
object detection strategy is to segment the moving regions
of interest from the static background. We reviewed previ-
ous publications [48]—-[54] that presented survey on primitive
approaches/categories for moving object detection from videos
and have reported the general concepts of various represen-
tative methods for each category. Although many detection
techniques are used in computer vision, not all work well
for atmospheric/weather degraded complex situations. Most
of these techniques are image and application dependent, and
their results are highly dependent on image characteristics.
From the literature, a total of 30 state-of-the-art methods
(i.e., 26 classical methods and 4 deep learning methods)
were implemented and tested on the E-TUVD to obtain the
most efficient technique(s) for the detection of moving objects
in degraded atmospheric/weather conditions. Some of these
methods indicated by an asterisk (%) in TABLE IV were
implemented in BGSlibrary [54]. The remaining techniques
are implemented by own or as per the codes made available
by the corresponding authors. For each method, only one set
of parameters was used for all the videos. These parameters
were selected based on author recommendations, or, when
not available, were adjusted to enhance the overall results.
A brief overview of each technique along with the associated
parameters and their settings is provided in TABLE IV.

To better visualize the categorization results, Fig. 4 depicts
the displayed results of thirty state-of-the-art detection
methods on E-TUVD under various atmospheric/weather
conditions.

B. Evaluation Metrics

The performance of moving object detection methods pro-
posed in the literature has been evaluated either based on
visual or objective inspection of the detection results. Because
none of the existing state-of-the-art methods are relevant to
all the situations of the E-TUVD, objective evaluation of
the detection algorithms is essential. Similar to many pixel
based moving object detection algorithms, we also adopted
the three most widely used supervised or reference image
based evaluation metrics (i.e., pixel oriented simple matching
coefficient based qualitative measurement). These evaluation
metrics are [69], [70]: F-Measure (F-Mes), Percentage of

TABLE IV

BRIEF SUMMARY OF THE MOVING OBJECT DETECTION TECHNIQUES
USED IN THE E-TUVD DATASET WITH THE
ASSOCIATED PARAMETERS

Method ID Method Name ?pplro‘ach/ IC  Parameters Setting
ViBe* Visual Background Extractor [44] BM/PLOD P R- 20; Sg- 16; N- 20;
Ne-2
ISBM Illumination Sensitive  [55] BM/PLOD M  Ti-0.05, T>- 20
Background Modeling
MTD Multiple Temporal Difference  [56] FD/PLOD M T-20
PBAS* Pixel Based Adaptive  [57] BM/PLOD P N- 35; Min- 2; Rip-
Segmenter 0.05; Ri- 18; Rs- 5
Tp- 0.05; Tr- 1; Tr- 2;
Tu- 200
GMM-V1 Stauffer- Gaussian Mixture [58] BM/PLOD M T-9;LR-0:05;n-3
Model
BM Bayesian Modeling [59] BM/PLOD M LF- 20; LR- 0.05; y-
0.1
XCS-LBP eXtended Center-Symmetric [60] BM/PLOD M Xg-1;Yr-1; Ti-2; To-
Local Binary Pattern 2; Br- 1; Np- 8;
DECOLOR DEtecting Contiguous Outliers  [61] BM/PLOD M - 1; Cp- le-4; Ni- 20;
in the LOw-rank No- 50
Representation
GMM-V2 Zivkovic- Gaussian Mixture [62] BM/PLOD M T-20;LR-0:01
Model
EB Eigen Background [63] BM/PLOD M T- 255; HS- 10; ED-
10
SC-RPCA Segmentation Constrained  [64] BM/PLOD M p-10%p-1.1
Robust PCA
IMTSL Incremental and Multi-feature [65] BM/PLOD P Ws- 25;rl- 1; 12- 8;
Tensor Subspace Learning r3- 2; t/t/t-- 0.01;

Wi/ W2/ W3/ W6l W1/ Ws-
0.125; w4- 0.225; w5-
0.025

LOBSTER* Local Binary  Similarity [66] BM/PLOD P Tiese- 125 Ti- 90;

Segmenter Nisee- 35; min- 2; ¢-
16; T- 0:5; Tr- 0:365;
Ts- 30
MBS Multimode Background  [67] BM/PLOD P corr_th-0.99; prob_th-
Subtraction 0.75; M-300; col_th-

3; ch_th- 100; T- 0.15;
m- 0.5

SSS-RPCA  Spatiotemporal Structured- [68] BM/PLOD M yi/ y2-0.08; €- 10; 1p-
Sparse RPCA 8; Krw-200; S-250
PAWCS* Pixel based Adaptive Word [69] BM/PLOD P  to- 1000; Nw- 50; Rc-

Consensus Segmenter 20; Ry- 2; a- 0.01; Xr-

0.5; Ar- 0.01

SUBSENSE*  Self-Balanced Sensitivity [70]  BM/PLOD P T~ 0.333; Re= 3; Re-

Segmenter 30; N- 50; #min- 2; a'"
- 100
CB* Codebook [71] BM/PLOD P Nw- 6.5 per pixel; TF-

40; Tu- 20; €- 20

VU-METER* Non Parametric Probabilistic [72] BM/PLOD P T- 0:03; LR- 0:995;
Model Bs-8
KDE* Kernel Density Estimation [73] BM/PLOD M  Non Parametric
MULTICUE* Adaptive multicue strategy [74] BM/PLOD P TI1-5;T2-02
SOBS Self-organization through  [75] BM/PLOD P LR- 180; LRy- 255; p-
artificial neural networks 100; pr - 240; TS- 40
SC-SOBS Spatially ~ Coherent  Self- [76] BM/PLOD P LR- 180; LRy- 255; p-
Organizing Background 100; pr - 240; TS- 40
Subtraction
KNN* K-Nearest Neighbor [77] BM/PLOD P T-20;LR-0:01;pn-3
LBP-MRF* Local Binary Pattern and [78] BM/PLOD P R-2; K- 3; Ti- 0.95;
Markov Random field T»- 0.75; LRs- 0.01;
LR2-0.01;y-8
WMV* Weighted Moving Variance [79] BM/PLOD P T-15
IDLM Interactive Deep Learning [80] DL/PLOD M NR
Method
MFCN Multiscale Fully Convolutional  [81] DL/PLOD M NR
Network
MSFgNet Motion Saliency Foreground [82] DL/ PLOD P NR
Network

ED-ResNet18 ResNet-18 via
Decoder Structure

Encoder [83] DL/PLOD P NR

IC- Implemented Code; BM- Background Modeling; DL- Deep Learning; PLOD- Pixel Level Object
Detection; P- Python; M- MATLAB; R- Radius of a Sphere; Sg- Sampling Factor; Nc- Number of close
pixel samples; T/T1/T2/ Tu- User Settable Thresholds; N- Number of Background Components; Min-
Number of components closer to Decision Threshold; Ryp- Rate at which Decision Threshold is
Regulated; €- Detection Threshold; T, Relative Threshold; #min- Minimum Number of Matches for
Background Classification; o'- Number of Samples for Moving Average; Ri- Lower Bound of
Decision Threshold; Rs- Scaling Factor of Decision Threshold; Tp/ Ti- Decreasing/ Increasing Rate at
which Probability of background is Updated; Ti/ Tu- Lower/ Upper Bound of Learning Parameter;
TL- Time Length; BL- Border Length; Np- Neighboring Points; A- Regularization Parameter; Cp-
Convergence Precision; Ni/ No- Maximum Number of Inner and Outer Iterations; Ws- Block Size; yi/
v2- Parameter Constant; €;- Nearest Neighbors for Constructing the Graphs; rp- Number of
Representation; ; Krw-Non Overlapping Temporal Windows; S/ M- Number of Super Pixels; corr_th-
Correlation Threshold; prob_th- Probability Threshold; col_th- Color Threshold; ch_th- Threshold of
Color Channel; m- Detection Threshold; to- Word weight Offset Value; Nw- Maximum number of
words per dictionary; Re- Color Distance Threshold; Re- LSBP Distance Threshold; o- Adaptation
Rate; &r- Updation rate Change Factor; Az- Distance Threshold Change factor; Xr/ Yr/ Ti- Radii
Parameter along X, Y and T axis; TI- Time Interval; - Number of Gaussians; HS- History Size; ED-
Embedded Dimension; p- Penalty Parameter; p- Convergence Speed Controller; LF- Number of
Learning Frames; LR/ LR/ LR>- Learning Rate; LR1- Learning Rate of Training Frames; TS- Number
of Training Steps; pr- Sensitivity; pr- Sensitivity of Training Frames; Bs- Bin Size; R- Radius of a
circle from which LBP histogram is computed; K- Number of pieces of Histogram; y- Constant; Taesc/
Tin- Threshold to determine if an input pixel matches the model based on the Hamming/ L1 distance;
Nisgp- Number of LSBP Descriptors; ¢- Sampling Factor; T,/ Ts- Relative/ Absolute LSBP Descriptor
Threshold; r1/r2/r3- Desired Ranks; ti/t2/ts- Corresponding Thresholds of Ranks; Wi to Ws- Set of
Weights; NR- Not Required for Model Testing.
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Fig. 4. Typical segmentation results for various atmospheric conditions on the E-TUVD: Left side of the figure: row (1) shows input Frames; row (2)
shows Ground-truth; row (3) shows ViBe results [44]; row (4) shows ISBM results [55]; row (5) shows MTD results [56]; row (6) shows PBAS results [57];
row (7) shows GMM-V1 results [58]; row (8) shows BM results [59]; row (9) shows XCS-LBP results [60]; row (10) shows DECOLOR results [61]; row
(11) shows GMM-V2 results [62]; row (12) shows EB results [63]; row (13) shows SC-RPCA results [64]; row (14) shows IMTSL results [65]; row (15)
shows LOBSTER results [66]; row (16) shows MBS results [67]; row (17) shows SSS-RPCA results [68]; Right side of the figure: row (1) shows Input
Frames; row (2) shows Ground-truth; row (3) shows PAWCS results [69]; row (4) shows SUBSENSE results [70]; row (5) shows CB results [71]; row (6)
shows VUMETER results [72]; row (7) shows KDE results [73]; row (8) shows MULTICUE results [74]; row (9) shows SOBS results [75]; row (10) shows
SC-SOBS results [76]; row (11) shows KNN results [77]; row (12) shows LBP-MRF results [78]; row (13) shows WMV results [79]; row (14) shows IDLM
results [80]; row (15) shows MFCN results [81]; row (16) shows MSFgNet results [82]; row (17) shows ED-ResNet18 results [83].

Correct Classification (PCC) and Matthew’s Correlation Coef-
ficient (MCC). These evaluation metrics are measured based
on four basic cardinalities: TP (True Positive), TN (True
Negative), FP (False Positive) and FN (False Negative) and

supposed to have higher values of F-Mes, PCC, and MCC
(i.e., close to 1).

C. Experimental Results and Discussion

each of these cardinalities measure the amount of overlapping
or missed area between the pixel level detection result and the
binary ground-truth (i.e. object masks). A perfect detection is

For objective evaluation, videos from each category of
the atmospheric/weather conditions from the E-TUVD were
considered. In our present study, E-TUVD video clips captured
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TABLE V

PIXEL ORIENTED SIMPLE MATCHING COEFFICIENT BASED COMPARISON OF THE
STATE-OF-THE-ART MOVING OBJECT DETECTION METHODS ON E-TUVD

State-of-the-Art

Pixel Oriented Similarity Measurement Metric

. -==memmeeemmmm--——-Fog Conditi Haze Conditi Dust Condition-------------m---
Detection Methods
F-Mes (1) PCC (1) MCC (1) F-Mes (1) PCC (1) MCC (1) F-Mes (1) PCC (1) MCC (1)

ViBe [44] 0.4170 0.8492 0.4220 0.6493 0.9155 0.6744 0.3517 0.7687 0.3232
ISBM [55] 0.5700 0.8962 0.5973 0.6873 0.9296 0.6932 0.4960 0.8378 0.4993
MTD [56] 0.4377 0.8366 0.4458 0.4347 0.8257 0.4743 0.2818 0.6371 0.2413
PBAS [57] 0.5627 0.9001 0.5913 0.6571 0.9158 0.6631 0.4743 0.8366 0.4724
GMM-V1 [58] 0.4747 0.8614 0.4884 0.6670 0.9244 0.6759 0.3543 0.7800 0.3546
BM [59] 0.5446 0.8896 0.5306 0.6952 0.9356 0.7026 0.4999 0.8446 0.5001
XCS-LBP [60] 0.1468 0.6562 0.1561 0.2100 0.7027 0.2305 0.3341 0.6895 0.2954
DECOLOR [61] 0.3872 0.8313 0.4004 0.5720 0.9091 0.5775 0.3600 0.7752 0.3278
GMM-V2 [62] 0.5283 0.8822 0.5403 0.4383 0.8317 0.4881 0.2882 0.6893 0.2718
EB [63] 0.4061 0.8255 0.4039 0.6105 0.9048 0.6035 0.4697 0.8469 0.4670
SC-RPCA [64] 0.3772 0.8337 0.3629 0.4876 0.8442 0.5289 0.4652 0.8374 0.4508
IMTSL [65] 0.4377 0.8420 0.4222 0.6129 0.9021 0.6044 0.4945 0.8403 0.4842
LOBSTER [66] 0.4249 0.8492 0.4458 0.6196 0.9107 0.6092 0.5052 0.8423 0.5010
MBS [67] 0.5387 0.8913 0.5302 0.5355 0.9013 0.5237 0.4923 0.8397 0.4687
SSS-RPCA [68] 0.5402 0.8945 0.5351 0.6634 0.9176 0.6696 0.4967 0.8418 0.4822
PAWCS [69] 0.4535 0.8589 0.4752 0.6368 0.9146 0.6253 0.5492 0.8521 0.5436
SUBSENSE [70] 0.5564 0.8933 0.5450 0.6671 0.9204 0.6783 0.5195 0.8473 0.5161
CB [71] 0.4943 0.8785 0.5298 0.5151 0.8732 0.5461 0.2108 0.6137 0.2046
VU-METER [72] 0.4728 0.8584 0.4841 0.4578 0.8474 0.4889 0.3892 0.8173 0.3797
KDE [73] 0.4399 0.8486 0.4434 0.6347 09133 0.6254 0.3803 0.8067 0.3558
MULTICUE [74] 0.4344 0.8659 0.4601 0.5178 0.8539 0.5460 0.5221 0.8510 0.5351
SOBS [75] 0.4838 0.8539 0.4694 0.6821 0.9251 0.6894 0.4426 0.8317 0.4402
SC-SOBS [76] 0.4990 0.8795 0.5104 0.6803 0.9278 0.6861 0.4395 0.8361 0.4267
KNN [771 0.2074 0.7207 0.1715 0.6727 0.9197 0.6844 0.2399 0.6230 0.2203
LBP-MRF [78] 0.3464 0.8197 0.3548 0.6991 0.9317 0.6985 0.5194 0.8372 0.5073
WMV [79] 0.4826 0.8646 0.4937 0.6705 0.9223 0.6785 0.4572 0.8292 0.4140
IDLM [80] 0.4906 0.8730 0.5298 0.5192 0.8941 0.5493 0.4294 0.8238 0.4046
MFCN [81] 0.4885 0.8719 0.4981 0.5268 0.8973 0.5671 0.4128 0.8230 0.4138
MSFgNet [82] 0.4795 0.8626 0.4726 0.5122 0.8859 0.5324 0.4389 0.8292 0.4125
ED-ResNet18 [83] 0.4663 0.8563 0.4927 0.5238 0.8834 0.5397 0.2453 0.6298 0.2415

S f Pixel Oriented Similarity Measurement Metrics

tateof-the-Art Rain Condition Poor llumination Condition Clear Day Condition--------------
Detection Methods
F-Mes (1) PCC (1) MCC (1) F-Mes (1) PCC (]) MCC (1) F-Mes (1) PCC (1) MCC (})

ViBe [44] 0.4925 0.8827 0.4966 0.2854 0.7068 0.2856 0.6745 0.9450 0.6876
ISBM [55] 0.5347 0.8968 0.5689 0.5843 0.7597 0.5727 0.6862 0.9568 0.6927
MTD [56] 0.4871 0.8537 0.4951 0.1766 0.6268 0.2139 0.6046 0.9236 0.6156
PBAS [57] 0.4796 0.8531 0.4869 0.4476 0.7469 0.4381 0.6895 0.9542 0.6876
GMM-V1 [58] 0.4514 0.8314 0.4652 0.4288 0.7383 0.4160 0.6764 0.9664 0.6964
BM [59] 0.4562 0.8374 0.4662 0.3887 0.7268 0.3793 0.5437 0.9007 0.5884
XCS-LBP [60] 0.2167 0.6769 0.2294 0.2261 0.6325 0.2205 0.5233 0.9003 0.5634
DECOLOR [61] 0.5347 0.8904 0.5689 0.4886 0.7494 0.4399 0.7735 0.9828 0.7758
GMM-V2 [62] 0.5048 0.8755 0.4964 0.2861 0.7098 0.3011 0.6033 0.9200 0.6171
EB [63] 0.4947 0.8819 0.5093 0.2604 0.6902 0.2313 0.6711 0.9598 0.6958
SC-RPCA [64] 0.4798 0.8472 0.4865 0.2780 0.7023 0.2719 0.6560 0.9544 0.6875
IMTSL [65] 0.4693 0.8595 0.4829 0.2339 0.6448 0.2245 0.7175 0.9811 0.7200
LOBSTER [66] 0.4439 0.8271 0.4625 0.3382 0.7104 0.3171 0.6936 0.9789 0.7124
MBS [67] 0.4298 0.8195 0.4547 0.2407 0.6895 0.2331 0.6905 0.9744 0.7012
SSS-RPCA [68] 0.4365 0.8289 0.4602 0.2673 0.6934 0.2387 0.7069 0.9783 0.7168
PAWCS [69] 0.2802 0.7683 0.2925 0.3561 0.7205 0.3742 0.7682 0.9792 0.7692
SUBSENSE [70] 0.4246 0.8209 0.4337 0.3624 0.7110 0.3330 0.6511 0.9292 0.6796
CB [71] 0.4653 0.8426 0.4820 0.1657 0.6042 0.1665 0.6171 0.9318 0.6425
VU-METER [72] 0.4842 0.8552 0.4894 0.2404 0.6893 0.2352 0.6159 0.9248 0.6231
KDE [73] 0.4880 0.8688 0.4962 0.1330 0.5590 0.1282 0.6962 0.9716 0.7059
MULTICUE [74] 0.4276 0.8227 0.4543 0.3700 0.7107 0.3228 0.7754 0.9834 0.7796
SOBS [75] 0.4905 0.8776 0.5343 0.4057 0.7292 0.3934 0.6226 0.9377 0.6582
SC-SOBS [76] 0.4080 0.8011 0.4113 0.4063 0.7295 0.4149 0.6235 0.9329 0.6547
KNN [77] 0.2294 0.6833 0.2573 0.1346 0.5893 0.1294 0.6014 0.9187 0.6212
LBP-MRF [78] 0.4036 0.7980 0.4118 0.1388 0.5980 0.1386 0.5792 0.9166 0.5892
WMV [79] 0.4173 0.8215 0.4122 0.3285 0.7086 0.3150 0.6286 0.9322 0.6582
IDLM [80] 0.2479 0.7009 0.2896 0.1733 0.6232 0.2118 0.5925 0.9174 0.6099
MFCN [81] 0.3872 0.7443 0.4052 0.1678 0.6201 0.2046 0.6199 0.9277 0.6475
MSFgNet [82] 0.2758 0.7854 0.3444 0.1714 0.6225 0.2108 0.6093 0.9213 0.6279
ED-ResNet18 [83] 0.2367 0.6973 0.2748 0.1583 0.5946 0.1659 0.5938 0.9182 0.6121

Bold Face and Underlined: Outer Performed Method; Bold Face: Second Most Outer Performed Method; Bold Face and Italic: Lowest Performed Method; 1- Higher Values

Indicate Perfect Segmentation; |- Lower Values Indicate Perfect Segmentation

under the static background conditions were used. For equi-
table decision making regarding the effective and efficient
state-of-the-art moving object detection methods, all the
aforementioned metrics were measured for each detection
method. Each of the methods was tested on a CPU platform

workstation with Intel®Xeon®Processor E5-1620 v3 @
3.50 GHz and 64 GB installed memory (RAM). The aver-
age performance of each detection methods over each video
category of the E-TUVD has been tabulated in TABLE V.
The two best performing methods in each of the representative
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Fig. 5. Error bar plot of assessment metrics for all moving object detection
methods over each category of weather/atmospheric conditions of E-TUVD.

atmospheric/weather challenges are presented in boldface with
underline and boldface. Conversely, the method with the worst
performance is presented in italics and boldface. Careful
inspection of TABLE V provides the following observations:

1) The top two outer-performed methods in each of the
video categories are not necessarily the best methods for
all the considered video categories. Higher values were
achieved for all evaluation metrics using the following
methods: fog condition in ISBM [55] and PBAS [57];
haze condition in BM [59] and LBP-MRF [78]; dust
condition in PAWCS [69] and MULTICUE [74]; rain
and poor illumination conditions in DECOLOR [61] and
ISBM [55] and clear day conditions in DECOLOR [61]
and MULTICUE [74]. These can be considered the two
outer-performed methods in each of the respective video
category. Conversely, XCS-LBP [60] was observed to
be the worst performing method in almost all video
categories, except dust and poor illumination conditions.
For dust and poor illumination conditions, CB [71] and
KDE [73] showed lower F-Mes, PCC, and MCC values
and can be considered the worst performing methods,
respectively.

2) Fig. 5 shows the error bar plot of performance evalua-
tion metrics for each video category over all the used
methods. In this plot, each bar represents the variability
of all detection methods over each video category to
indicate the error or uncertainty in a reported assessment
metric. As can be seen from Fig. 5, it should come
no surprise that for all the assessment metrics, videos
captured in clear day conditions exhibit high value for
all three assessment metrics (i.e., F-Measure (0.6502),
PCC (0.9440), and MCC (0.6679)) for all the methods.
In contrast, almost all methods faced difficulties with
videos in poor illumination conditions because they
mostly suffered from camouflage problems, resulting
in lower values of F-Mes (0.2881), PCC (0.6779), and
MCC (0.2843).

3) Furthermore, video clips of E-TUVD under fog, haze
and dust conditions were also challenging categories
and provided low metric values as compared to the
clear day situation. This is due to the effect of reduced
visibility on the ability to automatically detect moving
objects from long-distance video sequences degraded by
the atmospheric path. Moreover, detection algorithms
based on deep learning approaches (i.e., IDLM [80],
MFCN [81], MSFgNet [82], and ED-ResNetl8 [83])

used in our study did not show remarkable results in
any of the video categories of the E-TUVD except on
clear day conditions.

VI. VISIBILITY ENHANCEMENT OF DEGRADED
ATMOSPHERIC/WEATHER IMAGE SEQUENCES
USING STATE-OF-THE-ART METHODS

Degraded atmospheric/weather conditions drastically alter
images of natural outdoor scenarios. Under such conditions,
the performance of any moving object detection algorithm
deteriorates (as can be observed from TABLE V). Thus, it is
necessary to enhance and remove the visual effects of these
atmospheric/weather conditions to improve the performance
of detection algorithms. In this section, we compare the state-
of-the-art visibility enhancement methods for restoration of
atmospheric/weather degraded image sequences (under fog,
haze and dust conditions) of the E-TUVD.

A. State-of-the-Art Methods Tested

Over the years, many algorithms have been proposed for
visibility enhancement and restoration of real-world images
for various vision based applications. The most representative
visibility enhancement techniques can be based on the input
information:

o Multiple Image Approaches: Atmospheric Scattering
Model ([42], [43], [84]), Depth Estimation ([85]-[87]),
and Polarizing Filtering ([88]-[90]).

« Single Image Approaches: Fusion strategy ([91]-[94]),
Dark Channel Prior ([95]-[98]), Retinex Theory
([99]-[103]), Bayesian Strategy ([104], [105]), Filtering
([106]-[109]); Histogram Equalization ([110]-[114]),
Learning Strategy ([115], [116]), and Deep Learning
([117]-[121]).

These approaches are used as a basic framework to
develop algorithms for visibility restoration of outdoor scenes.
The multiple image based visibility enhancement techniques
requires additional information such as elevation, camera
position, and the approximate distance between the view
point and the sky area of the captured images. Unfortu-
nately, these techniques often suffer from various issues
that reduce the practical applicability of these techniques.
In contrast, nowadays, most studies have focused on single
image approaches because these methods usually approximate
the thickness of atmospheric conditions from a single input
image. From the literature, a total of 22 single image based
visibility enhancement methods (i.e., 20 classical methods
and 2 deep learning methods) were implemented and tested
on atmospheric/weather degraded image sequences of the
E-TUVD. For each method, the parameters were adjusted
based on a subjective measurement of the overall results, and
one set of parameters was used for all the videos used in
our analysis. A brief overview of these visibility enhancement
techniques, along with the associated parameters tuning is
provided in TABLE VI.

Benchmarking these methods, is advantageous because
these methods can be quantitatively compared for the
restoration of atmospheric/weather degraded outdoor images
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TABLE VI

BRIEF SUMMARY OF THE VISIBILITY ENHANCEMENT TECHNIQUES USED
IN THE E-TUVD DATASET WITH THE ASSOCIATED PARAMETERS

Method ID Method Name Appro.a ch/ IC  Parameters Setting
Technique

MSF Multi Scale Fusion [93] SI/FBS M n-6;7-2.5;6-0.3; Smax-
1; Whe- @/2.75; L- 5; d-
16

DCP Dark Channel Prior [95] SI/DCP M  Sr - 0.5; - 095; A-
1074 Ws- 3; €- 10°%; to-
0.1; P~ 15, P-7

FVR Fast Visibility Restoration [109] SI/FI M Vum- 300; Sv- 51; p-
0.95; Wg- 0.5; Smax- 1;
Gr- 1.3; Vu- 0.1

STD Structure Texture [122] SI/DCP T-0.7; A~ 10 Br- 0.5

Decomposition
BD Bayesian Defogging [105] SI/BS M C-2
BCCR Boundary Constraint and [98] SI/ DCP M Ws- 10; CO- 10; C1-40;
Contextual Regularization A-2; C-0.0001; o- 0.2;
os- 0.5; 8- 0.6

SE Stochastic Enhancement [123] SV FI M Cp-0.1

CAP Color Attenuation Prior [124] SI/DCP P r-15;B-1.0; 60- 0.12; 6,
- 0.95; 02- -0.78; o-
0.04; Fe- 60; €- 10°; to-
0.05; t1- 1

MSCNN Multi-Scale Convolutional [117] SI/DL M W 1; T- 1; Ge-1.7;

Neural Networks Ws- 15

NLR Non Local Prior [125] SI/PLOD M - 0.1; G 135
Anmin/Amax - 1

GIF Guided Image Filtering [107] SU/ FI M - 60; B- 1.0; Fs- 60; €-
10"

VAS Visual Artifact Suppression  [126] SI/ PLOD M to- 0.2; Bs- 6; ym- 0:77;
ao- 0.5; au- 0.05; X-
0.01;1-0.1

OT™M Optimal Transmission Map ~ [127] SI/ PLOD M B-0.8; Gr-0.5; Pw- 1; €-
10, Mc- 10

IPR Internal Patch Recurrence [128] SI/PLOD M NN-9; Sg- 0.95; Pr- Se-
3;1-0.5; Ps- 7

MLP Multilayer Perceptron [115] SI/LS M W 16; 8s- 8; wi- 0.7;
to- 0.1

CcO Convex Optimization [129] SI/PLOD M G- 1.44; M- 0.02; ho-
0.002; A3- 0.04

OCE Optimized Contrast [130] SI/HE M Bs- 100; Ps- 8; Ai- 5;

Enhancement ov- 10; to- 0.1; Gr- 0.8;
€-10°

CBF Color Balance and Fusion [92] SI/FBS M SLi- 0.001; SL2- 0.005;
u- 0.5; o- 0.25; A~ 0.1;
L-5

RB Retinex Based [100] SI/RBS M - 2.3; ap- 100; Bp- 0.1;
ve- 1; A 10

GPR Two-layer Gaussian Process [131] SI/ SPc- 200; SPe- 1000;

Regression EV- 50; Sr- 0.2; S- -
0.005; to- 0.1; r- 35; €-
103%; Sc-0.2; 5-0.2
DehazeNet  Dehazing Network [119] SI/DL P r-50;€-103
CLAHE Contrast-limited ~ adaptive [110] SI/HE M W, 8; Ce- 0.008; a-
histogram equalization 0.6

IC- Implemented Code; SI- Single Image Approach; FBS- Fusion Based Strategy; DCP- Dark Channel
Prior Based Strategy; FI- Filtering Based Strategy; BS- Bayesian Based Strategy; DL- Deep Learning
Based Strategy; LS- Learning Based Strategy; HE- Histogram Equalization Based Strategy; RBS- Retinex
Based Strategy; n- norm; y- Luminance factor; - Average Constant; o- Standard Deviation; Smax- Higher
Saturated Pixel Constant; Wre- Higher Frequency Cut-off; L- Pyramid Level; d- Upsampling Factor; Sg-
Scaling Factor; €/A/ i/A2/A2/a0/au- Regularization Parameter; Ws- Window Size; to- Lower Bound of
Transmission; Ps- Patch Size; P- Pad Size; Vy- Minimum Visibility Observable Distance; S,- Segment
Length; p- Percentage of Restoration; Wg- White Balance; Ge- Gamma Correction Factor; Vy- Value for
the Height of the Horizon Line; T- Threshold Parameter; Ai/Br- Smoothness Level Controller; o/ C-
Constant/ Multiplicative Constant; C0/C1- Boundary Constants ;Cri- Contrast Enhancement Limit; o-
Distribution Parameter; os- Sensitivity Controller; 8- Exponential Constant; C,- Small Positive Constant; r-
Local window Radius; f- Scattering Coefficient; 00/0:/02- Linear Coefficients; F- Filter Size; to/ti-
Minimum and Maximum Bound of Transmission; Wg- White Balance; T- Threshold; Amin/ Amax- Minimal
and Maximal Value of Airlight; Dr- Dehazing Ratio; Ps- Sharpness Adjustable Parameter; yu- Magnitude
Adjustable Parameter; n- Weighting Parameter; Mc- Maximum Pixels for Coarse Scale; 8s- Window
Sliding Value; oi- Desired Restoration Level; Bs- Block Size; Ai- Weighting Parameter; ov- Controls the
Variance of Probability; SLi/ SL»- Saturation Level; w- Parameter to control Image Dynamics; op/Pe/yp-
Free Positive Parameters; SPc/SPr- Number of Super Pixels Coarse/ Fine; EV- Number of Eigen Vectors;
Sk- Sampling Rate; S- Stability/ Proximity; Sc- Sky Compensation; SF- Scaling Factor; PR- Global
Pruning Rate

(i.e., owing to fog, haze and dust). Compared with the
corresponding original frames, the results of these visibility
enhancement methods on E-TUVD are displayed in Fig. 6.

B. Qualitative Assessment Metrics

Measuring the perceptual quality of images by objective
quality assessment metrics that agree with the human observer

is a fundamental need of image processing. In case of
real-world applications, reference images (i.e., ground-truth
images) are not available, and the quality evaluation is solely
based on the test images. Hence we performed quantitative
evaluation using blind measures (i.e., no-reference quality
assessment metrics were used) [132]. The metrics consid-
ered in our study are: rate of new visible edges (e), mean
ratio (r), percentage of saturated pixels (¢), and visibility
measurement (VM). The first two metrics (e and r) use the
enhanced degree of image edges to approximate the enhanced
degree of image visibility. The third metric (¢) indicates
color restoration performance of enhancement algorithms by
approximating the rate of saturated pixels after enhancement.
Finally, the last metric (VM) quantifies the degree of the
visibility of the image after enhancement based on visible edge
segmentation. A well enhanced image is supposed to have high
values of e, r, and VM and a low value of o.

C. Experimental Results and Discussion

For qualitative comparison, similar videos used for testing
the detection algorithms in fog, haze and dust conditions were
selected from the E-TUVD dataset. To compute the simulation
results, visibility enhancement algorithms were implemented
on a CPU platform of a 64-bit workstation as mentioned in
Section V. The average values of the aforesaid assessment
metrics for restoring the visibility of atmospheric/weather
degraded image sequences are reported in TABLE VII. Similar
to TABLE V, the two best performance methods in each of the
representative atmospheric/weather challenges are presented in
boldface with underline and boldface. Conversely, the worst
performance methods are presented in italics and boldface.
TABLE VII and Fig. 6, show that the quality assessment
indexes may not be absolutely consistent with the subjective
assessment, but they can be used as references for compar-
ing and benchmarking different enhancement algorithms. The
following observations can be made:

1) For fog and haze conditions, the SE method [123]
achieved superior values for all the visibility assessment
criteria and hence can be considered the best perfor-
mance method among all methods in preserving both
the colors and edges and effectively enhancing the visi-
bility. Although the SE method [123] provided effective
results for these two aforementioned conditions, it did
not effectively enhancing visibility of image sequences
degraded because of dust conditions and exhibited color
distortion.

2) Moreover, no single enhancement algorithm showed
the best performance under the considered atmospheric/
weather conditions (i.e., degraded due to fog, haze, and
dust). For dust conditions, the CBF method [92] and
NLR method [125] were the two outer-performed meth-
ods. Additionally, the NLR method [125] also effectively
restored the visibility of scenes under fog conditions
and can be considered the second most outer-performed
method after the SE method [123].

3) The DCP method proposed by He et.al. [95] is one
of the most popular single image based enhancement
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Fig. 6. Visual comparison of the visibility enhancement techniques on E-TUVD: First row shows Input Frames; Second row: Col (1,3,5) shows MSF [93]
results; Col (2,4,6) shows DCP [95] results; Third row: Col (1,3,5) shows FVR [109] results; Col (2,4,6) shows STD [122] results; Fourth row: Col
(1,3,5) shows BD [105] results; Col (2,4,6) shows BCCR [98] results; Fifth row: Col (1,3,5) shows SE [123] results; Col (2,4,6) shows CAP [124] results;
Sixth row: Col (1,3,5) shows MSCNN [117] results; Col (2,4,6) shows NLR [125] results; Seventh row: Col (1,3,5) shows GIF [107] results; Col (2,4,6)
shows VAS [126] results; Eight row: Col (1,3,5) shows OTM [127] results; Col (2,4,6) shows IPR [128] results; Ninth row: Col (1,3,5) shows MLP [115]
results; Col (2,4,6) shows CO [129] results; Tenth row: Col (1,3,5) shows OCE [130] results; Col (2,4,6) shows CBF [92] results; Eleventh row: Col (1,3,5)

shows RB [100] results; Col (2,4,6) shows GPR [131] results; Twelfth row: Col
results.

algorithms, and in recent years, various algorithms have
been proposed depending on this concept. To improve
the edge preservation and efficiency, the improved DCP
algorithm as proposed by Meng et.al. [98] i.e. the BCCR
method, exhibited larger values of all visibility criteria
than the algorithm proposed by He et.al. [95] and could
comparatively improve efficiency.

(1,3,5) shows DehazeNet [119] results; Col (2,4,6) shows CLAHE [110]

4) Compared with all enhancement algorithms, the
STD [122], IPR [128], and CLAHE [110] methods
exhibited smaller values in terms of qualitative assess-
ment metrics for all the three degraded atmospheric/
weather conditions (i.e., fog, haze and dust), and these
results were consistent with the subjective assessment,
as shown in Fig. 6.
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TABLE VII
NO-REFERENCE IMAGE BASED QUALITATIVE EVALUATION OF THE STATE-OF-THE-ART VISIBILITY ENHANCEMENT METHODS ON E-TUVD

State-of-the-Art

1.

No-Reference Quality A

Enhancement = oo Fog Condition Dataset Haze Condition Dataset: Dust Condition Dataset--—-----—--
Methods e (D) r(h) o () VM (1) e(d) r(1) s (1) VM (1) e(D) r(M) o () VM (1)
MSF [93] 0.4573 1.1822 0.0688 7.9677 0.9507 2.0454 0.0046 17.8229 0.6539 1.8131 0.0081 11.2883
DCP [95] 0.4669 1.2027 0.0666 7.6727 0.6003 1.7388 0.0132 14.0345 0.4880 1.3241 0.0492 10.4237
FVR [109] 0.3369 1.1629 0.0761 7.5450 0.4348 1.3383 0.0266 15.3442 0.2787 0.8824 0.0983 9.5024
STD [122] 0.2177 1.0356 0.5521 5.6153 0.3677 1.0842 0.0400 14.8770 0.5398 1.5873 0.0309 11.5771
BD [105] 0.4325 1.1763 0.0773 7.7496 0.4714 1.3801 0.0224 14.0696 0.1604 0.6531 0.0827 7.6309
BCCR [98] 0.8788 1.6445 0.0319 9.8475 0.5253 1.5769 0.0167 14.0613 0.4637 1.0701 0.0577 10.2269
SE [123] 0.9277 2.4648 0.0055 11.152 0.9633 2.4526 0.0013 19.2568 0.3107 0.9496 0.0800 9.4016
CAP [124] 0.3096 1.1512 0.1056 7.1514 0.5230 1.5269 0.0172 14.2355 0.3373 0.9470 0.0750 9.6345
MSCNN [117] 0.8649 1.1822 0.0268 9.0604 0.6532 1.9007 0.0100 15.9600 0.6602 1.4088 0.0275 10.5201
NLR [125] 0.9197 1.9977 0.0117 9.9659 0.9268 1.9779 0.0057 17.3002 0.7975 1.9077 0.0004 12.3979
GIF [107] 0.7253 1.4639 0.0414 8.9985 0.6449 1.8876 0.0090 15.3614 0.4185 1.0421 0.0602 10.6763
VAS [126] 0.5235 1.2466 0.0598 8.7318 0.8798 1.9220 0.0079 16.5669 0.4122 1.0008 0.0632 9.6756
OTM [127] 0.5460 1.2684 0.0623 8.0198 0.7889 1.9087 0.0081 16.2680 0.2258 0.8557 0.0884 8.2912
IPR [128] 0.2528 1.0896 0.4053 6.7403 0.3395 1.0890 0.0642 12.5370 0.1213 0.0894 0.1555 6.2763
MLP [115] 0.7787 1.4872 0.0341 9.0475 0.6521 1.8352 0.0076 16.4482 0.5510 1.7027 0.0200 11.9143
Cco [129] 0.4942 1.2481 0.0501 7.7191 0.5042 1.4666 0.0211 14.1601 0.4341 1.1622 0.0495 10.6526
OCE [130] 0.7233 1.4037 0.0416 8.5341 0.6125 1.8184 0.0105 13.1381 0.2279 0.8824 0.0893 8.5973
CBF [92] 0.7542 1.4552 0.0351 8.1263 0.3827 1.1417 0.0387 14.6075 0.8782 1.9201 0.0076 14.4955
RB [100] 0.6586 1.3364 0.0453 8.6802 0.3958 1.1623 0.0313 14.3570 0.5049 1.3747 0.0329 9.3227
GPR [131] 0.5313 1.2548 0.0560 8.9256 0.3923 1.3322 0.0368 14.6611 0.3552 0.9755 0.0740 9.2677
DehazeNet [119] 0.5985 1.2931 0.0458 8.2933 0.6171 1.7495 0.0105 15.2665 0.3681 0.9687 0.0637 10.1492
CLAHE [110] 0.2881 1.1414 0.3728 6.2371 0.3024 1.0595 0.1100 11.1988 0.1564 0.5018 0.1022 7.1757

Bold Face and Underlined: Outer Performed Method; Bold Face: Second Most Outer Performed Method; Bold and Italic Face: Lowest Performed Method; 1- Higher Values Indicate

Better Enhancement; |- Lower Values Indicate Better Enhancement
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Fig. 7.  Box-whisker plot of the assessment metrics for moving object
detection methods in pre-degradation (i.e. before visibility enhancement rep-
resented by blue boxes) and post restoration (i.e. after visibility enhancement
represented by red boxes) of degraded atmospheric/weather conditions of
E-TUVD.

VII. INFLUENCE OF VISIBILITY ENHANCEMENT FOR
ACCURATE DETECTION OF MOVING OBJECTS
IN DEGRADED ATMOSPHERIC/
WEATHER CONDITIONS

In this section, we demonstrate the practical utility of vis-
ibility enhancement for accurate detection of moving objects
in atmospheric/weather degraded outdoor scenes. To validate
this point, considering the most outer-performed visibility
enhancement method (i.e., the SE method [123] for fog
and haze conditions and the CBF method [92] for dust
conditions) in TABLE VII, Fig. 7 displays the box-whisker
plot of pre-degradation (i.e., represented by blue boxes) and
post restoration (i.e., represented by red boxes) performance
results of moving object detection methods (as described
in TABLE V) of outdoor scenes. In this non-parametric
plot, each box is enclosed by first and third quartiles to
represent groups of numerical data and is divided into two
parts by the median value represented using red lines on the
Y-axis. The outliers (represented by red asterisks) in the plot
show the extreme variability of the assessment metrics in
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Fig. 8. Characterization of the visibility enhanced frames from the
E-TUVD dataset using Entropy (For clarity the Y-axis has been shown for
range [6-8]).

the dataset. Because of the limitation of space, we cannot
display the experimental results of moving object detection
algorithms after visibility restoration in a tabulated form.
Fig. 7 shows that successful image restoration as a pre-
processing step may significantly improve the performance of
moving object detection algorithms (an average accuracy of
5.82 and 6.08 percentage-point improvement under fog and
haze conditions and 11.37 percentage-point improvement
under dust conditions). To characterize the texture information
in pre-degraded and post-restored frames of the E-TUVD,
we used entropy to measure the contents, as shown in
Fig. 8. The higher entropy values of restored frames over
those of the degraded frames (shown in Fig. 8) indicate an
image with adequate details, thereby denoting good qual-
ity. Therefore, the distinguishable information of enhanced
frames can reveal hidden salient objects as compared to
the atmospheric/weather degraded frames. For the same rea-
son, the detection results obtained in our case after restor-
ing the atmospheric/weather degraded image sequences are
higher than those obtained before restoration. Some significant
improvements can also be observed in Fig. 9, which shows that
moving object detection after visibility restoration suppresses
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Fig. 9.  Results of applying the moving object detection algorithm to
the post restored and pre-degraded video sequences: (al),(a2): input frames
in fog and dust condition; (bl),(b2): Corresponding Ground-truth frames;
(c1),(c2) visibility enhanced frames (SE result [123] for fog condition and
CBEF result [92] for Dust condition); (d1), (d2): Moving object detection before
enhancement (ISBM result [55] for fog condition and PAWCS result [69] for
dust condition); (el),(e2): Moving object detection after enhancement (ISBM
result [55] for fog condition and PAWCS result [69] for dust condition).

all false detections, while keeping the “real” moving objects.
In addition, the shapes of the extracted moving objects
appeared more clearly in the restored frames than in the
atmospheric/weather degraded image sequences. Fig. 9(el)
clearly shows that the moving objects detected are two walking
human beings, one scooter rider, and one rickshaw puller after
visibility enhancement; in contrast, in Fig. 9(d1), the scooter
rider (far distance object) is not well detected because of
fog. Similarly, in Fig. 9(e2), the moving objects detected are
two bike riders, whereas in the corresponding frame which is
degraded because of dust (Fig. 9(d2)), it is difficult make this
conclusion. This emphasizes the benefit of visibility restoration
as a basic tool for high level target acquisition (such as
recognition) for both human visual systems and computerized
applications.

VIII. CONCLUSION

We present a ground-truth annotated benchmark video
dataset named as Extended Tripura University Video Dataset
(E-TUVD) for moving object detection in atmospheric/weather
degraded outdoor scenes. The dataset aims to provide the
research community with a benchmark facility for mov-
ing object detection under dynamic variations of adverse
atmospheric/weather conditions in an outdoor environment.
We then investigate the potentiality of several popular state-
of-the-art moving object detection and visibility enhancement
techniques on the E-TUVD dataset. Furthermore, the effect
of visibility restoration on the ability to automatically
acquire moving objects was also examined here for video
sequences degraded by extreme atmospheric/weather condi-
tions. Although there are still many limitations that need
to be addressed further, the purpose of this study has been
successfully fulfilled. The dataset will be extended to include
other atmospheric/weather conditions and will be regularly
revised based on feedback from the research community.
In the future, our aim is to design an unsupervised repre-
sentation learning model based on deep convolutional neural

networks for accurate detection of moving objects in degraded
atmospheric/weather conditions to improve the performance of
each evaluation metric and to get the detection results as close
as possible to the ground-truth images.
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