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Estimation of number of segments in an image attracts a formidable interest among the research commu-
nity. The number of segments in an image is estimated by calculating the number of clusters present in
the pixels of that image. The present work offers an unsupervised method, named “Electrostatic Force
Index (EF-Index)”, to estimate the number of clusters inherent in an image, reporting of which is very
rare in literature. The proposed approach is inspired by Coulomb's law of electrostatics. The EF-Index ex-
plores the mutual influence of an arbitrary pixel on another, by considering them similar to point charges.
Our proposed cluster indexing method, viz. EF-Index is capable of determining the number of clusters pres-
ent in an image. It has a strong resemblance to the way the electrostatic force is operative between a pair of
static point charges in a closed system as per Coulomb's principle. In order to justify the effectiveness of the
proposed approach, we have compared EF-Index of a given image with DB-Index, I-Index, CVNN-Index, DOE-
AND-SCA and Sym-Index of the same image. Experimental results show that EF-Index is same as other state-
of-the-art indices, whereas EF-Index does not require any clustering algorithm. To establish the applicabil-
ity of the EF-Index, the same is applied for image segmentation considering Berkeley Segmentation Dataset
and Stanford Background Dataset. We observe the results obtained conform to the ground truth and results
achieved by applying existing well-established segmentation techniques on the same datasets. The efficacy
of the proposed approach is further substantiated in terms of its reduced computational overhead in com-
parison to the state-of-the-art segmentation algorithms.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Determination of the number of segments (S) inherent in an image
for image understanding is a challenging problem in computer vision.
The lower bound of number of segments (S) can be determined by
the number of clusters (K) present in an image. The proper value of
the number of segment or number of clusters is particularly useful in
clustering-based image segmentation [1–6] by assigning a proper label
to an individual pixel in the image, resulting in the formation of disjoint,
coherent and compact regions [36,37].

Determining number of clusters automatically in an optimal sense
has been studied for decades. All popular algorithms for the number of
clusters determination of in an image [10,11,13,14,23] are inoperative
without completion of the clustering task. The information about the
number of segments or number of clusters in an image can be used to
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segment the image. However, finding the number of clusters using
any of the existing state-of-the-art algorithms viz. DB-Index [10],
I-Index [11], CVNN-Index [13], DOE-AND-SCA [14], and Sym-Index [23]
is not possible without applying a clustering algorithm multiple times,
which is computationally expensive. Therefore, an automatic technique
for identifying the number of clusters without applying any underlying
clustering algorithm is highly desirable. Present literature lacks such a
robust algorithm. This problem is the prime motivation behind the
development of the EF-Index. The proposed EF-Index algorithm can
determine the number of clusters present in an image independent of
any clustering algorithm. The output of the EF-Index algorithm i.e. the
information about the number of clusters in an image can be used as
number of segments to further segment the image.

Image segmentation algorithms can be broadly divided into two
categories viz. clustering-based segmentation algorithms like K-
Means (KM) [7], and Fuzzy-C-Means (FCM) [8] and non-clustering-
based segmentation algorithms like N-Cut (Normalized Cuts) [32],
Felzenszwalb–Huttenlocher (FH) [33], Fractional-Order Darwinian
Particle Swarm Optimization (FODPSO) [34], etc. Both of them utilize
the information about the number of clusters directly or indirectly.
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The advantage of a priori knowledge about the correct value ofK and S is
as follows:

(a) Direct benefit:
Many state-of-the-art clustering-based segmentation algorithms
[7–9] require the appropriate value of K (number of clusters) as an
input parameter which influences the quality of the segmentation.

(b) Indirect benefits:
(i). For non-clustering-based image segmentation algorithms, this

information about the number of segments may help in the
proper determination of input parameters, which eventually
results in proper segmentation [44].

(ii). The number of clusters or number of segmentsmay be used as
a parameter for categorization or grouping of images for image
understanding or content based image retrieval. Due to geo-
metrical transformations like T, R, S, etc. member of clusters
in an image remains almost same. If number of segments
present in one image is not close to that of another image
then it is ensured that the images are not similar. Moreover,
if the images are to be similar then the number of clusters
present in the concerned images should also have values
close enough. Therefore, number of clusters can also be used
as a parameter for coarse grouping of a set of given images.
Incidentally, the number of clusters (K) and the number of segments
(S) in an image may or may not be equal. In most of the occasions, K is
dominated above by S in an image. However, in some typical situations,
itmay be otherwise also. Therefore the non-clustering-based segmenta-
tion algorithms will be the indirect beneficiary of the information
regarding the number of clusters and/or segments.

In most of the situations, it is tough to ascertain the correct value of
number of clusters/segments directly from an image content. Therefore,
an automated selection of the number of clusters K is highly desirable as
well as challenging for any application, as it will eliminate the necessity
of human intervention. Improper choice of this number K may lead
to undesirable consequence like either under-segmentation or over-
segmentation [37].

Over the years many algorithms capable of deciding the number of
clusters in statistical datasets have been reported in the literature. Da-
vies–Bouldin Index (DB-Index) [10], I-Index [11], Clustering Validation
Index based on Nearest Neighbors (CVNN-Index) [13], Dynamic Nearest
Neighbors (DOE-AND-SCA) [14] and Symmetry distance-based index
(Sym-Index) [23] are some of the popular algorithms to this effect. Most
of them are frequently used in data mining [29,46], voice mining [15],
web mining [16], and text mining [17]. These are also subsequently
used in images [22,23]. Indices mentioned here, measure the similarity
between the constituent members of a cluster and dissimilarity among
the members of two different clusters or some function of those indices.
For any statistical dataset or image, these indices generate a value
corresponding to a K (number of clusters). From the outputs, correct K
(number of clusters) value is calculated by finding the corresponding op-
timumvalue. For example, DB Index provides the correct number of clus-
ters for minimum value [10] and the I-Index corresponds to the
maximum value [11].

Despite being effective and easy to use for images in specific and
datasets in general, all the indexing based techniques have some inher-
ent drawbacks. These are:

(a) Dependency on prior clustering or partitioning:

Any such index value is available only on execution of some cluster-
ing algorithms. Bypassing the execution of a clustering algorithm, deter-
mination of a value for cluster index is not yet reported.

(b) Performance of clustering algorithm
Due to the above mentioned dependency on clustering algorithms,
the performance of the indexes is also largely dependent on the choice
of the clustering algorithm. Application of different indexing techniques
using same clustering technique may report different results. Same
indexing techniquesmay report different values as an effect of applying
different clustering algorithms on the same dataset.

From the above discussion, it is clear that a technique devoid of
such dependencies would show a distinct advantage in respect of the
automatic number of clusters or number of segments determination.

Some such non-Index based automatic techniques exist in the
literature for statistical datasets. Some of them are visual methods for
cluster tendency assessment [18–20]. These algorithms generate an in-
termediate representation of the given data, which assists in proper
prediction of the number of clusters inherent therein. Bezdek and
Hathaway proposed the VAT [21] algorithm, falling under this category.
Many modifications of the VAT algorithm were subsequently supple-
mented to the literature such as the DBE [24], iVAT [25], bigVAT [26]
and sVAT [27], coVAT [28], asiVAT [45], clusiVAT [47], etc. However,
none of them are designed for images.

Despite thepresence of all such algorithmsdetermining the number of
clusters, in the literature, there is hardly any non-index based algorithm,
available for application to images, containing multiple clusters within.
Suchalgorithms if availablewill not only be time efficient but alsobehelp-
ful to perform efficient image segmentation based on clustering.

This article proposes a novel method to compute the Electrostatic
Force Index (EF-Index), which is the number of pixel clusters within a
given image. EF-Index is computed based on influence of electrostatic
force on a pixel Intensity exerted by all the pixels of the input image.
The proposed method does not have any pre-clustering requirement
to find optimum number of clusters in an image, which is an important
prerequisite of DB-Index [10], I-Index [11], CVNN-Index [13], DOE-AND-
SCA [14], Sym-Index [23], etc. Hence, the task of clustering or segmenta-
tion becomes more effective. The proposed algorithm can act as a pre-
processing step of segmentation algorithms in general, and especially
for the clustering-based image segmentation algorithms.

To sum up, the major contributions of this article are:

1. Our proposed Electrostatic Force Index (EF-Index) is anunsupervised
approach, capable of automatically determining number of clusters
inherent in an image.

2. EF-Index is independent of any clustering algorithm.
3. The proposed Index value, which is comparable to that of thenumber

of clusters determined by other state-of-the-art Indexing techniques
such as DB-Index [10], I-Index [11], CVNN-Index [13], DOE-AND-SCA
[14], Sym-Index [23].

4. Estimation of Number of Segments from Number of Clusters.

Application of the proposed method is as follows:

1. The presentmethod clubbedwith clustering-based image segmenta-
tion method produces better segmentation results than the existing
state-of-the-art segmentation algorithms [31–34], where K is not
needed a priori.

2. Noting the results of experiments conducted on the images used in
traditional image processing methods, twenty five in number and
collected fromdifferent sources, aswell as images available in bench-
mark segmentation image databases viz. the Berkeley Segmentation
Dataset (BSDS300) and (BSDS500) [30], and Stanford Background
Dataset (SBD) [31].

The rest of the paper is arranged as follows. In Section 2 the problem
is defined that our proposed algorithm solves, Section 3 describes our
proposed EF-Index algorithm. The Section 4 compares the outputs of
the proposed EF-Index algorithmwith other state-of-the-art algorithms
for calculating the number of clusters. Then we compare the segmenta-
tion results yielded by existing clustering algorithms based on the
values of K reported by our proposed EF-Index algorithm, with other
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competing state-of-the-art segmentation approaches on BSDS300,
BSDS500, and SBD datasets. Section 5 sums up the proposed contribu-
tion and indicates some appropriate future directions.

2. Problem definition

In this section,we shall analyze the relationship between the number
of segments and the number of clusters from an image context and
subsequently justify the significance of identifying the number of clus-
ters in clustering-based image segmentationwith appropriate examples.

The atmosphere has an influence on how far one can see through
aerosols, the type of infrared camera used, and especially the waveband
inwhich the camera operates are also of importance. Because the particle
size is much larger than the wavelength in the visible portion of the EM
spectrum (0.4 to 0.74 μm), attenuation by atmospheric aerosols is inde-
pendent ofwavelength. Thatmeans attenuation isworst in case of the vis-
ible wavelength. Aswavelength increases, attenuation becomes less of an
issue. Since wavelengths of the far-infrared are larger than other infrared
wave bands, impact of particles on far-infrared is relatively insignificant.
Far-infrared provides the advantage of ‘seeing’ not only at night but also
through many atmosphere aerosols such as dust, fog, rain, etc. In Fig. 2,
there is some visual and corresponding thermal sample frames have
shown in night time at several atmospheric conditions. To characterize
the texture, we have estimated entropy value where the visual frames
shown less entropy value than thermal frames. Being able to see through
low light and atmospheric particles is useful for security and surveillance
applications can all benefit from the power of thermal imaging.

2.1. Relationship of the number of segments (S) with the number of clusters
(K) in an image

For an image, the number of clusters K may or may not be equal to
the number of segments S. As some pixels, belonging to the same clus-
ter, may be associated with more than one segments and vice-versa.
Fig. 1. (a) Synthetic imageswith different number of clusters (K) and number of segments (S). (a
N S. In (a). (i)K=3, S=3; (a). (ii) K=4, S=4but for (a). (iii)K=3, S=4, and in (a). (iv)K=3
explored here. (b). (i) Corresponds to the original image, comprising three segments viz. red, gr
in (b). (ii)K=1, (b). (iii) K=2, (b). (iv)K=3. It is evident that, although the original image is s
K = 1 or 2. On the contrary for K N 3, empty clusters are formed, leading thereby to inapp
(ii) are real life examples of K b S, where the members of a single cluster are found belonging
snoods of the two birds are member of the same cluster but part of two different segments. S
different segments. However in (c). (iii) the pixels of the shirt belong to multiple clusters bein
image. Its Clustering-based image Segmentation is done for different K as depicted in (d). (ii) K=
Accordingly, K and S can have three possible relationships — (i) K
and S are equal (K = S), (ii) K is less than S (K b S), or (iii) K is greater
than S (K N S). Different possibilities are illustrated in Fig. 1. (a) and (c).

Out of these three possibilities, two are often foundmost frequently
viz. K = S and K b S. This is primarily because the clusters themselves
will form individual segments if not divided into multiple segments. In
the case (iii), mentioned above, K N S holds when a whole object is con-
sidered as one segment although it has numerous constituent parts.
During initial segmentation always K b S, but after post processing or re-
finement, K becomes greater than S (K N S). Therefore, it is evident that
the number of clusters (K) obtained is a lower bound on the number of
segments (S) in an image. Hence, Smay be estimated from K. It is worth
to note that, since segments are spatially dis-integrated over the space
(2D in this case), number of segments (S) is essentially greater than or
equal to the number of clusters (K). In this work estimation of number
of segments is done based on the principle that K ≤ S.

In the segmented image, the members of two or more clusters must
maintain distinct intensity thereby resulting in the formation of non-
coherent regions. For these reasons, the value of K will usually be
bounded above by S.
2.2. Influence of number of clusters (K) on clustering-based image
segmentation

Proper determination of the value of K is critical for clustering-based
image segmentation. Fig. 1. (b) and (d) illustrates this on one synthetic
and another natural image. For ready understanding, we may utilize a
synthetic image Fig. 1. (b). (i) from which one may easily determine
the proper value of K in the image.

Although it is effortless to determine the number of clusters present
in such a synthetic image, this is not same for natural images, just by
looking at them as evident from Fig. 1. (d). Fig. 1. (c) offers glaring ex-
amples to indicate as to how the human vision is inadequate to calculate
the correct number of segments and/or clusters present in the image.
). (i) and (a). (ii) exhibit the situation,K= S, (a). (iii) exhibits K b S, and (a). (iv) indicatesK
, S=2. (b) The effect of number of clusters (K) on Clustering-based Image Segmentation is
een, and blue. Clustering-based Image Segmentation outcomeswith differentK as depicted
egmented for different values of K, proper segmentation is arrived at K = 3 only and not
ropriate and/or no segmentation. (c) Deals with some real life images. (c). (i) and (c).
to two different segments. On the contrary, (c). (iii) is an example of K N S. In (c). (i) the
imilarly in (c). (ii) the sky and the snow have pixels from the same cluster belonging to
g in the same segment. (d) Is a traditional benchmark image. (d). (i) is the input baboon
1, (d). (iii) K= 2, (d). (iv) K=3, (d). (v) K=4, (d). (vi) K= 5, and (d). (vii) K= 6.
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Considering the challenge associated with decide the actual value of
K for an arbitrary image and also to ensure its proper segmentation
based on clustering, we offer a technique that fulfills the requirements
in an automatic manner.

3. Proposed method

In this article, we propose a new Index, named the Electrostatic
Force Index (EF-Index) which will directly yield the number of clusters
for any input image. It is defined as:

K ¼ COUNT DISTINCT min Φ i; jð ÞjI i; jð Þ ¼ p
� �� �

P¼0;::…;255

h i
ð1Þ

Here, K is the Electrostatic Force Index. I is the input image and p is
any intensity value of the input image, i = 1, … … , M and j = 1, …
… , N. The size of the input Image I is (M × N), andΦ is the Electrostatic
Force Image of the same size i.e. (M × N). The method to generate
Electrostatic Force Image, Φ, form the input Image, I, is elaborated in
Algorithm 1.

To explain the concept of Electrostatic Force, we begin the discussion
with the preliminary concept of Coulomb's law of electrostatics.
Coulomb's law of electrostatics is applicable in respect of two static
point charges. In the present scope, we postulate that such a framework
may be modeled in a similar way in a digital image. The influence of an
arbitrary pair of pixels participating in the image formation is reflected
in their respective intensity values in a very similarwayCoulomb's prin-
ciple of electrostaticsworks. It is understandable that closer the distance
the concerned pixels maintain between themselves, the influence of
one pixel on another will be more for any appropriate distance metric.

For the sake of completeness, we shall briefly provide Coulomb's law
of electrostatics, which is the building block of the proposed Electro-
static Force Index.

3.1. Coulomb's law of electrostatics

Coulomb's law of electrostatics [12] provides the mathematical
foundation for the interaction between two static point charges. In
Fig. 2. (a) two point charges A and Bwith charges, qA and qB respectively
situated at distance rAB apart interact via Electrostatic force, represented
by:

F
!

AB ¼ C � qA � qB
r2AB

ð2Þ

where, C is known as Coulomb's constant, originally represented by K,
we have replaced it with C in order to avoid confusion with K that is
representing the Electrostatic Force Index.

Now, we shall discuss how different pixels with their associated
intensities in an image show resemblance with Coulomb's principle.

Fig. 2. (b) explains how two pixels P and Q located at (i, j) and (x,y)
positions in the input image, I influence one another, maintaining a
Fig. 2. (a) Two static point charges A and B, having distance rAB exerting forces (F(A,B),F(B,A)) on
situation as of the two point charges A and B, respectively. (c) The total force on P1 in the norm
Manhattan distance rPQ. They have respective intensities of IP and IQ,
intensities being scalar [44] we consider their magnitudes only in the
present scope. The Electrostatic Force is represented by Eq. (3).

FPQ ¼ C � IP � IQ
r2PQ

ð3Þ

where, C is the proportionality constant like Coulomb's constant. Later
we shall see that C may assume any constant value and hence in
the present scope the value of C is taken as unity for computational
simplicity.

Then the input image I is normalized to [0,1] range from [0,255]
range by dividing every pixel with 255, the maximum gray-level value
[39] of any image, as per Eq. (4). The new image is represented as Γ.

Γ i; jð Þ ¼
I i; jð Þ
255

ð4Þ

It is assumed that a pixel does not have any force contribution on
itself, behaviorally similar to a point charge. Accordingly, the cumulative
force viz. the Electrostatic Force F(i,j) on any (i,j)th pixel of an image, Γ,
having (M × N) pixels will be:

F i; jð Þ ¼
XM
x ¼ 1
i; jð Þ

XN
y ¼ 1
≠ x; yð Þ

C � Γ i; jð Þ � Γ x;yð Þ
r2i; jð Þ x;yð Þ

2
66664

3
77775 ð5Þ

where, [x] is the integer value closest to x. Γ(i, j) and Γ(x,y) are the normal-
ized intensity values stored at the coordinates (i, j) and (x,y) of Γ. r(i,j)(x,y)
is the Manhattan distance between the locations (i, j) and (x,y).

3.2. The Electrostatic Force Index (EF-Index)

To compute Electrostatic Force Index (EF-Index), an Electrostatic
Force Image (EF-Image), Φ, is constructed, using Eq. (6), from the
corresponding Force Matrix, F, obtained from the given image, I.

Φ i; jð Þ ¼
255

Fmax−Fminð Þ � F i; jð Þ−Fmin
� �� �

ð6Þ

where, Fmax and Fmin are the maximum and minimum values of the
Force matrix, F respectively. By this operation the force values are
converted to [0,255] range. Due to the scale fitting operation in
Eq. (6), the intensities stored in Φ will be invariant of any choice of C.
The influence of the Electrostatic Force Image,Φ, on the corresponding
input image I is represented as the Force Influence Image, Ψ, given by
Eqs. (7) to (9):

Θp ¼ Θp∪ Φ i; jð Þ
� �

; ∀I i; jð Þ ¼ p ð7Þ
each other obeying Coulomb's law of electrostatics. (b) Two pixels P and Q are in similar
alized image is stored in the corresponding location of the Electrostatic Force image.
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The set Θp, which is initially NULL, stores the influences of Electro-
static Force on all the pixels of input image I having the intensity value p.

θp ¼ min Θp
� � j Θp

�� ��N0 ð8Þ

For any intensity level, p, present in I, the minimum of all location-
corresponding intensity values from Θp is stored in θp.

All the corresponding pixels of I having intensity value p are replaced
by θp and stored as the Force-Influence Image, Ψ, as shown in Eq. (9).

Ψ i; jð Þ ¼ θp;∀I i; jð Þ ¼ p ð9Þ

To compute Electrostatic Force Index (EF-Index) all the existing
values of θp, are stored in set, Ω , given in Eq. (10).

Ω ¼ xjx ¼ θp0≤p; x≤255
� � ð10Þ

The Electrostatic Force Index (K) of the input image I is calculated as
the number of distinct non-negative intensity values present in θ, which
is computed as the cardinality of the set Ω, given by Eq. (11).

K ¼ Ωj j ð11Þ

Next, we analyze the behavioral aspect of Electrostatic Force Image
and its influence on the input image.

To compile together, the final intensity Φ(i,j) corresponding to any
initial intensity I(i,j) is set preferably at the minimum final intensity
level, without any alteration, to neutralize the effects of the surrounding
pixel intensities and the location of the pixel under consideration.

Lemma 1. The Electrostatic Force on pixels having same intensity
values is constant and independent of location.

Proof. The total force on any pixel is represented by Eq. (5). The effects
of surrounding intensities (case-2) and the location (case-3) of any
pixel in I are ignored by setting the value of a set of pixels present in
Φ to the minimum and stored in Ψ, where all these pixels correspond
to pixels having the same intensity value in the input Image I. As a result,
the total force exerted on any arbitrary pixel from a set of pixels having
same intensity value is independent of its location.

Lemma 2. The contribution of other pixels to the computation of force
on any pixel is always constant.

Proof. The total force on any pixel is obtained by Eq. (5).

This equation can be modified as Eq. (13)

F i; jð Þ ¼ C � Γ i; jð Þ �
XM
x ¼ 1
i; jð Þ

XN
y ¼ 1
≠ x; yð Þ

Γ x;yð Þ
r2i; jð Þ x;yð Þ

ð13Þ
Fig. 3. (a) The original Image I, (b) its corresponding Force Matrix F, (c) Electrostatic Force Im
between the intensities of Φ vs. I, (f) the graph between the intensities ofΨ vs. I.
We can assume, Eq. (14).

S ¼
XM
x ¼ 1
x; yð Þ

XN
y ¼ 1
≠ i; jð Þ

Γ i; jð Þ ð14Þ

which is the cumulated intensity of the image.
Now considering Eq. (15).

d i; jð Þ ¼
XM
x ¼ 1
i; jð Þ

XN
j ¼ 1
≠ x; yð Þ

1
r2i; jð Þ x;yð Þ

ð15Þ

So, we can rewrite Eq. (13) as Eq. (16).

F i; jð Þ ¼ C � Γ i; jð Þ � S−Γ i; jð Þ
� �� d i; jð Þ ð16Þ

So, we can modify Eq. (16) as Eq. (17).

F i; jð Þ ¼ f Γ i; jð Þ; S;d i; jð Þ
� � ð17Þ

i.e. F(i,j) is a function of normalized pixel intensity Γ(i,j) of the (i,j)th pixel,
total intensity of the image S, which will be constant for any image and
also the position of the (i, j)th pixel d(i, j).

From Lemma 1 we can say that, F(i, j) is independent of Γ(x,y) and
r (i,j)(x,y)
2 . So, by using Eqs. (14) and (15), we can say F(i, j) is independent

of S and d(i, j). So, the Eq. (17) can be written as Eq. (18).

F i; jð Þ ¼ f 1 Γ i; jð Þ
� � ð18Þ

The highest degree of Γ(i,j) is one in Eq. (16). It is also visible in case-1
of the Electrostatic Force analysis that the graphbetween force andpixel
intensity is linear. By expressing the Eq. (18) in standard linear equation
form, we get Eq. (19).

F i; jð Þ ¼ const1 � Γ i; jð Þ
� �þ const2 ð19Þ

Now, from Eq. (16) we can say that there is no constant in the sum
form. So, in Eq. (19) the value of const2 will become zero. By expressing
const1 as just const, we get Eq. (20).

F i; jð Þ ¼ const � Γ i; jð Þ ð20Þ

Thereforewe can conclude that the force F(i,j) linearly depends on Γ(i,j)
exclusively.

Theorem1. Forces on pixels with similar intensity values and placed in
different locations will have insignificant difference in magnitude.

Proof. For a change ΔΓ(i, j) in the intensity of the (i,j)th pixel Γ(i, j), it will
become (Γ(i, j) ±Δ Γ(i, j)).We assume that the change,ΔΓ(i,j) is insignificant
as compared to the original intensity, Γ(i, j), as given in Eq. (21):

Γ i; jð ÞNNΔΓ i; jð Þ ð21Þ
age (EF-Image) Φ of I, (d) Force Influence Image, Ψ, derived from I and Φ, (e) the graph



Table 1
Tuning parameters of the existing algorithms.

Algorithm Parameters

DB-Index [10] p = 2, denotes L-2 norm i.e., Euclidian distance
q = 2, denotes 2nd central moment i.e., standard deviation

I-Index [11] Power p = 2
CVNN-Index [13] Nearest Neighbor k = 10
DOE-AND-SCA [14] Filter ratio ω = 3
Sym-Index [23] knear = 2
Mean shift [31] Bandwidth Spatial {2 h 1} = 7, Color {2 h} = 6.5
N-Cut [32] compactness = 300
FH [33] alpha = 4
FODPSO [34] alpha = 0.6, current population of the swarm = 30,

minimum population = 10, maximum population = 50,
current number of swarms = 4, minimum number of

swamps = 2, maximum number of swamps = 6

Fig. 4. The effect of EF-Index algorithm on images having unimodal, bimodal, and multimodal Gaussian histograms.
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Now, from Lemma 2 we can infer that the total force F(i,j) on the (i,j)
th pixel is linearly dependent on its intensity, Γ(i,j) as per Eq. (20).

Therefore, the updated force F(i,j) ± ΔF(i,j) on the (i,j)th pixel due to
change in Γ(i,j) of Eq. (21) becomes Eq. (22).

F i; jð Þ � ΔF i; jð Þ ¼ Γ i; jð Þ � ΔΓ i; jð Þ
� �� const

¼ Γ i; jð Þ � const
� �� ΔΓ i; jð Þ � const

� � ð22Þ

From Eqs. (20) and (22), we arrive at Eq. (23).

ΔF i; jð Þ ¼ � ΔΓ i; jð Þ � const
� � ð23Þ

Nowbydividing both sides of Eq. (23)with F(i,j)we arrive at Eq. (24).

ΔF i; jð Þ
F i; jð Þ

¼ ΔΓ i; jð Þ � const
F i; jð Þ

ð24Þ

Using Eqs. (20) and (24), we arrive at Eq. (25)

¼ ΔΓ i; jð Þ � const
Γ i; jð Þ � const

ð25Þ

¼ ΔΓ i; jð Þ
Γ i; jð Þ

ð26Þ

Therefore, by using Eqs. (21) and (26), we get Eq. (27):

F i; jð ÞNNΔF i; jð Þ ð27Þ

The above derivation justifies that force differential at the (i, j)th
pixel will be insignificant with respect to the Force there when
the intensity differential at the same location is insignificant to the
corresponding intensity contribution.
Theorem 2. The EF-Index algorithm can correctly detect the number of
cluster K present in an image.

Proof. Assuming the input image is uniformly distributed, i.e. all the
neighborhood of the input image are similar. Therefore, the effect of
the factors r(i,j)(x,y)

2 in the denominator can be ignored, as it will be
similar for all the pixels in the image.

As a result Eq. (5) will be modified as:

F i; jð Þ ¼
XM
x ¼ 1
i; jð Þ

XN
y ¼ 1
≠ x; yð Þ

C � Γ i; jð Þ � Γ x;yð Þ

2
66664

3
77775 ð28Þ



Table 2
Number of clusters determination using EF-Index and comparison with DB, I, CVNN, Sym Indexes over traditional images and benchmark image datasets.

Traditional images BSDS300 BSDS500 SBD

Name Index EFI
No.

Name Index EFI
No

Name Index EFI
No.

Name Index EFI
No.

DB I CVNN Sym AND DB I CVNN Sym AND DB I CVNN Sym AND DB I CVNN Sym AND

Lena KM 5 5 5 5 5 5 12,084 KM 6 6 6 6 6 6 5096 KM 7 5 5 5 5 5 0000087 KM 7 7 7 7 7 7
FCM 5 5 5 5 FCM 6 6 6 6 FCM 5 5 5 5 FCM 7 5 6 7

Camera man KM 7 5 6 7 7 7 41,033 KM 5 5 5 5 5 5 16,004 KM 6 10 8 8 8 8 0002395 KM 7 7 7 7 7 7
FCM 5 5 7 7 FCM 5 5 5 4 FCM 8 8 8 8 FCM 7 7 6 7

Barbara KM 10 7 10 9 7 8 86,016 KM 5 7 7 5 5 5 23,050 KM 9 9 9 9 9 9 0003178 KM 9 9 9 9 9 9
FCM 9 9 7 6 FCM 5 5 5 5 FCM 8 9 9 10 FCM 9 11 9 9

Boat KM 11 8 7 9 8 9 101,087 KM 8 10 8 8 8 8 35,028 KM 4 4 4 4 4 4 0007932 KM 7 5 5 7 7 7
FCM 7 8 9 9 FCM 8 8 8 8 FCM 4 4 3 4 FCM 9 7 7 7

Peppers KM 7 7 7 7 7 7 145,086 KM 8 9 8 8 8 8 41,096 KM 6 6 6 6 6 6 0101434 KM 6 5 5 5 5 5
FCM 7 7 7 7 FCM 9 6 8 6 FCM 6 6 6 6 FCM 5 5 6 5

House KM 7 7 7 7 7 7 229,036 KM 9 9 9 7 7 7 45,000 KM 4 4 3 4 4 4 1,000,731 KM 8 7 7 8 8 8
FCM 7 7 7 7 FCM 7 7 7 7 FCM 4 4 4 4 FCM 8 7 9 8

Airplane KM 7 8 9 10 8 9 302,008 KM 6 6 6 6 6 6 80,085 KM 7 9 9 7 7 7 1,001,685 KM 6 6 6 6 6 6
FCM 11 10 10 8 FCM 6 6 7 6 FCM 7 9 8 7 FCM 6 6 4 5

Arctichare KM 6 7 9 9 7 8 385,039 KM 9 8 9 9 9 9 140,006 KM 7 7 7 7 7 7 2,000,042 KM 7 5 5 5 8 7
FCM 8 6 9 7 FCM 11 11 9 11 FCM 9 6 7 7 FCM 7 8 7 7

Baboon KM 7 8 10 10 7 8 76,002 KM 7 7 7 8 7 7 306,051 KM 10 10 10 10 10 10 3,000,148 KM 5 6 6 5 6 5
FCM 7 7 10 9 FCM 7 8 7 7 FCM 10 10 11 10 FCM 5 5 5 5

Boy KM 5 6 3 5 5 5 80,099 KM 4 4 3 4 4 4 384,089 KM 8 6 8 8 10 8 4,100,246 KM 8 8 8 7 8 8
FCM 5 7 5 6 FCM 4 4 4 4 FCM 8 8 8 9 FCM 6 10 8 8

Flinstones KM 9 10 9 9 9 9 100,080 KM 5 4 5 7 5 5 25,098 KM 8 8 9 8 8 8 4,100,280 KM 7 9 9 10 9 9
FCM 9 7 9 9 FCM 5 5 5 5 FCM 8 8 10 8 FCM 9 11 9 9

Fruits KM 13 13 13 13 13 13 118,020 KM 5 6 6 6 6 6 35,070 KM 4 4 4 4 4 4 5,000,119 KM 7 7 7 7 9 7
FCM 13 12 13 13 FCM 6 5 6 6 FCM 4 4 3 4 FCM 8 7 5 7

Frymire KM 7 7 7 7 7 7 151,087 KM 8 9 8 8 9 9 71,046 KM 6 6 6 6 6 6 5,000,125 KM 6 6 6 6 6 6
FCM 7 7 7 7 FCM 8 7 8 8 FCM 8 4 6 6 FCM 6 6 6 6

Girl KM 8 8 8 8 8 8 159,045 KM 5 5 5 5 3 5 170,054 KM 9 9 9 9 9 9 6,000,015 KM 8 8 8 8 7 8
FCM 8 8 8 8 FCM 5 5 5 5 FCM 9 9 9 9 FCM 6 8 8 6

Goldhill KM 9 9 9 9 9 9 181,018 KM 6 6 6 6 6 6 181,079 KM 9 8 9 9 9 9 6,000,036 KM 6 7 7 5 7 7
FCM 9 9 9 9 FCM 6 7 5 6 FCM 9 9 9 9 FCM 7 9 7 8

Monarch KM 7 7 7 7 7 7 198,023 KM 8 8 7 8 8 8 3096 KM 5 5 5 5 5 5 8,001,155 KM 4 5 5 4 5 5
FCM 7 7 7 7 FCM 8 8 8 10 FCM 5 5 5 4 FCM 5 5 5 5

Mountain KM 9 9 9 9 9 9 274,007 KM 7 7 7 7 7 7 126,007 KM 9 9 9 9 8 9 8,003,131 KM 9 11 11 9 9 9
FCM 9 9 9 9 FCM 7 7 7 7 FCM 9 9 9 9 FCM 9 9 9 9

Pool KM 6 6 6 6 6 6 301,007 KM 6 5 6 6 6 6 253,055 KM 6 6 4 6 6 6 9,002,090 KM 6 6 6 6 6 6
FCM 6 6 6 6 FCM 6 6 6 6 FCM 8 5 6 6 FCM 6 6 6 6

Sails KM 5 5 5 5 5 5 361,084 KM 7 6 7 6 7 7 300,091 KM 9 11 9 9 9 9 9,003,635 KM 10 10 10 10 10 10
FCM 5 5 5 5 FCM 9 8 7 7 FCM 9 9 9 9 FCM 10 10 10 10

Zelda KM 5 5 5 5 5 5 374,067 KM 7 6 6 6 6 6 361,010 KM 6 6 6 6 6 6 9,005,105 KM 12 10 10 10 10 10
FCM 5 5 5 5 FCM 4 6 6 6 FCM 6 6 6 6 FCM 10 10 10 10
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Table 5
Quantitative segmentation evaluation for BSDS500.

PRI VOI GCE BDE

Mean shift 0.693 3.248 0.311 17.146
N-Cut 0.553 2.577 0.181 34.063
FH 0.692 3.441 0.310 19.857
FODPSO 0.638 3.787 0.500 19.187
EF-Index
(Fuzzy C-means)

0.770 3.518 0.362 10.988

EF-Index
(K-means)

0.770 3.639 0.371 10.988

Table 4
Quantitative segmentation evaluation for BSDS300.

PRI VOI GCE BDE

Mean shift 0.685 2.720 0.308 17.968
N-Cut 0.554 2.570 0.181 35.449
FH 0.686 3.405 0.307 20.814
FODPSO 0.631 3.746 0.491 20.089
EF-Index
(Fuzzy C-means)

0.763 3.484 0.348 11.403

EF-Index
(K-means)

0.762 3.616 0.359 11.403

Table 3
Comparison of traditional BSDS300, BSDS500, and SBD datasets.

Data set Similar results with EF-Index

DB
Index

I Index CVNN
Index

Sym
Index

DOE-AND-SCA

Traditional images KM 80.77% 65.38% 76.92% 84.62% 80.77%
FCM 76.92% 61.54% 84.62% 80.77%

BSDS300 KM 85% 70% 82% 82% 84%
FCM 81% 73% 79% 81%

BSDS500 KM 86% 74% 82% 81% 85%
FCM 82% 75% 80% 83%

SBD KM 82.24% 75.10% 80% 78.04% 79.16%
FCM 84.06% 77.20% 75.10% 84.06%

Fig. 5. Image segmentation results from Berkeley Se
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The force on the (i,j)th pixel will be:

F i; jð Þ ¼ Γ i; jð Þ �
XM
x ¼ 1
i; jð Þ

XN
y ¼ 1
≠ x; yð Þ

C � Γ x;yð Þ

0
BBBB@

1
CCCCA

2
66664

3
77775 ð29Þ

For any (M × N) image the quantity

 PM
x ¼ 1
ði; jÞ

PN
y ¼ 1
≠ðx; yÞ

C � Γðx;yÞ

!

will be similar for all the pixels in the image. Therefore, consider-

ing

 PM
x ¼ 1
ði; jÞ

PN
y ¼ 1
≠ðx; yÞ

C � Γðx;yÞ

!
¼ const1, we get:

F i; jð Þ ¼ Γ i; jð Þ � const1
	 
 ð30Þ

Therefore, after force transformation the force on the (i, j)th pixel
will be proportional to its original intensity Γ(i, j). After converting the
force F(i, j) to the nearest integer, it will go into the group of the pixels
having similar intensity as the (i, j)th pixel.

Now if we consider the histogram of the input image as a single
modal Gaussian curve, i.e. the histogram have only one group or cluster
of pixels. Then after force transformation all the pixels will come into
one single value. Let's consider that value to be μ, representing mean
of the Gaussian curve. After force transformation all original intensity
the values in the 6σ range of the Gaussian curve will be represented
by the final value μ.

Similarly for an image having multi Gaussian histogram with K
modes, which are separated by a distance d N 6σ, will generate K differ-
ent μs representing the K modes of the original input image.

Therefore, we can say that the proposed EF-Index algorithm can
correctly detect the number of clusters K present in an image.

Force exerted on similar pixels should be very close barring two ex-
ceptions (i) effect due to difference in the values of the surrounding
pixels, and (ii) distance between the pixels. Effect due to dissimilarities
in pixels is mitigated to a large extent by rounding off the force com-
puted for any pixel intensity. Effect due to distance between two pixels
is eliminated by taking the correspondingminimum force value for a set
of similar pixels. Clustering is occurring as a result of compaction of
corresponding pixels into same force value.
gmentation Data Set (BSDS300 and BSDS500).



Table 6
Quantitative segmentation evaluation for SBD.

PRI VOI GCE BDE

Mean shift 0.642 2.318 0.169 16.430
N-Cut 0.746 2.149 0.197 11.706
FH 0.755 6.575 0.431 12.184
FODPSO 0.743 3.292 0.422 9.416
EF-Index
(Fuzzy C-means)

0.764 3.885 0.481 10.031

EF-Index
(K-means)

0.762 4.012 0.491 10.075
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3.3. Determination of appropriate number of quantization levels (EF-Index)
of input image

Force Influence Image, Ψ, discussed in Section 3.2, will contain
number of quantization levels. The process to construct Ψ and
finding out of quantization levels from input image I, is shown in Fig. 3.
The Input image, I, is shown in Fig. 4. (a); the image shown in Fig. 4.
(b) is the Force matrix, F, obtained from I; and Fig. 4. (c) is the EF-
Image, Φ of I. The generation of EF-Image from input image is given in
Algorithm 1.
Fig. 6. Image segmentation results from S

Fig. 7. Comparison between the number of segments (S) in the Ground-Truth and number of
dataset and (f) its Ground-Truth. Here, K= 10; S = 10. (b) Another Natural Image from SBD d
(h) from BSDS500 dataset. Here, K = 16; S = 17. (d) Natural Image and Ground-Truth (i) fr
BSDS500 dataset. Here, K = 10; S = 2. Therefore, in (a) K= S, then in (b), (c), and (d) K b S, a
The Force Influence Image,Ψ, is depicted in Fig. 4. (d). The graph of
intensities ofΦ against those of I is shown in Fig. 4. (e). It may be noted
that, separate but close intensities in I concentrate into a single intensity
value in Φ due to the effect of rounding-off the force values as per
Eq. (5). As a result, similar intensities are assigned with same force
value, as apparent in the graph Fig. 4. (e). Moreover, the phenomenon
of computing the influence of EF-Image, as discussed earlier, has got
close resemblance to quantization of intensities of any arbitrary input
gray image. For any single intensity value in I, there could be several
location-corresponding different intensity values in Φ. To avoid redun-
dancies thus obtained, the minimum of all such intensities is stored in
corresponding locations of a new image, named as Force Influence
image,Ψ. Due to removal of redundancies some of the influence points
present in Fig. 4. (e) will be mapped to other lower levels, which is
shown in theΨ vs. I graph of Fig. 4. (f). As a result, there is a possibility
that the number of levels present inΦ vs. I graphmay decrease in theΨ
vs. I graph, which will eventually produce optimum number of quanti-
zation levels i.e. EF-Index. The process to generate EF-Index from
Input Image and its corresponding EF-Image is detailed in Algorithm 2.

The count of such different intensity levels in the Force Influence
image, Ψ will eventually turn-out to be the number of clusters, K, as
per Eq. (11) inherent in the original image I.
tanford Background Data Set (SBD).

clusters (K) determined by the EF-Index for natural images. (a) Natural Image from SBD
ataset with Ground-Truth (g). Here, K = 6; S = 10. (c) Natural Image and Ground-Truth
om BSDS500 dataset. Here, K = 7; S = 9. (e) Natural Image and Ground-Truth (j) from
nd in (e) K N S.
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Algorithm 1 is used to compute EF-Image, Φ. This EF-Image is used
to generate the Force Influence Image, Ψ. The number of gray levels
present inΨ is calculated and reported as K. Incidentally, K corresponds
to the number of clusters present in the original image I, which is the
final output in the form of EF-Index produced by Algorithm 2. It is
noteworthy that the above algorithms are free of user intervention in
any form.

4. Experimental results

We conducted experiments on twenty five traditional images as
they are considered ideal by the image processing community [43] to
analyze the performance of any algorithm and benchmark datasets
such as Berkeley Segmentation Data Sets viz. BSDS300 and BSDS500
[30], and the Stanford Background Data Set SBD [31] containing 300,
500, and 715 images respectively.

The experiments conducted to evaluate the EF-Index algorithm
are divided into two parts. First, we analyzed the number of clusters
yielded by the proposed algorithm. For that we matched the results
produced by the EF-Index algorithm with the existing state-of-the-
art algorithms viz. DB-Index [10], I-Index [11], CVNN-Index [13], DOE-
AND-SCA [14], and Sym-Index [23] for computing the correct value
of K.

In the second part of the experiment, we evaluated clustering-based
image segmentation results for different algorithms. The state-of-the-
art clustering algorithms like the K-means [7], and Fuzzy C-means [8]
are applied to perform the clustering-based image segmentation on
the gray level version of the images, taking the EF-Index as requisite
input i.e. the number of clusters. The results of segmentation using EF-
Index are compared with existing state-of-the-art segmentation algo-
rithms viz. Mean-shift [31], N-Cut [32], FH [33], and FODPSO [34].
Their performances aremeasured using the standard segmentation per-
formancemeasures, such as Probabilistic Rand Index (PRI) [40], Variation
of Information (VOI) [41], Global Consistency measure (GCE) [44] and
Boundary Displacement Error (BDE) [42]. Higher value of PRI and lower
value of each of VOI, GCE, and BDE indicates better segmentation. The
MATLAB source code for PRI [40], VOI [41], GCE [44], and BDE [42] is
kindly given on-line at http://www.eecs.berkeley.edu/~yang/software/
lossy_segmentation/.

Algorithm 1. EF-Image generation algorithm.
Algorithm 2. Electrostatic Force Index determination algorithm.
As shown by Yang et al. in [35], the segmentation performancemea-
sure of PRI is highly correlated with the Ground Truths produced by ex-
perts. The performance measure of GCE [44] does not restrict over-
segmentation by setting the penalty for it. It generates high score if
each pixel in an image is considered as a separate segment. Sometimes
three complementary measures VOI [41], GCE [44], and BDE [42] pro-
duce high score for unrealistic bad segmentations [38]. All the tech-
niques have to be contemplated simultaneously in order to ascertain
the effectiveness of any segmentation algorithm.

The consecutive sections will discuss these experiments and their
results in details.

4.1. Experimental setup

All the experimentswere conducted usingMATLABR2013a environ-
ment on a computer with Intel Core i5 3.20 GHz CPU and 4 GBmemory
running Windows 8.1.

4.2. Comparison with state-of-the-art algorithms for determination of
number of clusters

In this section, we compare the output of the EF-Indexwith the out-
puts of state-of-the-art algorithms for number of clusters determination
[10,11,13,14,23]. The parameters used by thesemethods arementioned
in Table 1. The Traditional image set contains 25 natural images. The
three image datasets BSDS300, BSDS500, SBD containing 300, 500, 715
images respectively are used in this experiment. Table 3 shows the
overall percentage of similarity between results of the EF-Index algo-
rithm and the existing state-of-the-art algorithms for determination
number of clusters. Results obtained for some of the randomly selected
individual images are depicted in Table 2. Table 3 reveals that output
generated by our proposed algorithm matches significantly with the
state-of-the-art indexes [10,11,13,14,23]. In terms of similarity, the
best result is obtained for BSDS300 and BSDS500 datasets with I-Index.
From Table 2, it can be said that our EF-Index algorithm determines

http://www.eecs.berkeley.edu/~yang/software/lossy_segmentation/
http://www.eecs.berkeley.edu/~yang/software/lossy_segmentation/
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the correct number of clusters for any natural image accurately, with no
external intervention whatsoever.

4.3. Clustering-based image segmentation assisted by the EF-Index
algorithm

In second part of experiment, we evaluated the clustering-based
segmentation performed by the clustering algorithms [7,8], using the
number of clusters, derived by the proposed EF-Index algorithm. The
comparisons are done with state-of-the-art segmentation algorithms
[31–34] using the segmentation evaluation measures [40–42]. Table 1
represents the parameters used by these methods.

Next, we shall briefly discuss about the datasets and compare the
segmentation results obtained from them.

5. Berkeley Segmentation Dataset (BSDS300 and BSDS500)

The benchmarked image segmentation dataset, Berkeley Segmenta-
tion Dataset BSDS300 consists of 300 benchmarked Natural Images di-
vided into 100 test and 200 train images. Whereas, the BSDS500
dataset extends the BSDS300 by adding another 200 images. One of
the characteristics of the Berkeley dataset is that they provide multiple
ground-truths for each of the image. They are generated by multiple
human experts and are applied for appraising the performance of any
segmentation algorithm.

In our experiment, we use four segmentation evaluation criteria, in
which PRI (Probabilistic Rand Index) [40] evaluates the probabilistic per-
formance of an algorithm by comparing with multiple ground truths.
For other three measures [41,42] all the ground truths have been
taken into account by considering the average performance correspond-
ing to any image. Based on these four criteria, performances of different
algorithms for BSDS300 and BSDS500 are presented in Tables 4 and 5
respectively.

FromTables 4 and 5 it can be said that, the segmentation results pro-
duced by [7,8] conducted on the basis of EF-Index outperforms the cut-
ting edge segmentation algorithms [31–34]. The PRI values generated
by our method are much higher as compared to other algorithms. This
observation establishes superiority of our proposed method. However,
in the cases of VOI and GCE the Mean shift [31], N-Cut [32], FH [33]
algorithms generate better results than the present method. Fig. 5 de-
picts segmentation outcome of some sample images from two dataset
mentioned above.

6. Stanford Background Dataset (SBD)

This benchmarked image segmentation dataset, named as Stanford
Background Dataset comprises 715 natural images. Each image is pro-
vided with a text file, which contains labels corresponding to each
pixel in them. The overall segmentation performance for all the seg-
mentation algorithms [31–34] is shown in Table 6.

In this case, better results are observed form the combination of our
EF-Index algorithm with clustering algorithms [7,8]. The PRI values are
higher for our proposed technique, indicating better performance. How-
ever, regarding VOI [41], everyone else performed better except FH [32].
For GCE [44] also other algorithms viz. [31–34] outperformed our pro-
posed one. In case of BDE [42] only FODPSO [34] produces more
Table 7
Comparison between number of segments (S) present in Ground-Truth and correspond-
ing number of clusters (K) determined by EF-Index.

Dataset K b S K = S K N S

BSDS300 72.34% 4.62% 23.04%
BSDS500 74.15% 4.41% 21.44%
SBD 76.36% 4.20% 19.44%
impressive results. Fig. 6 depicts segmentation outcome of some sample
images from SBD.

6.1. Comparison between the number of segments (S) of the Ground-Truth
and the corresponding number of clusters (K) determined by proposed EF-
Index

This section compares the number of segments (S) present in the
expert generated Ground-Truths provided in the BSDS300, BSDS500,
and SBD datasets, with the Number of Clusters (K) determined by
EF-Index from corresponding Natural Images. Some of the examples
are shown in Fig. 7. The overall comparison is provided in Table 7.

From Table 7 it is clear that usually the Number of Cluster (K)
determined by the EF-Index algorithm is less than or equal to that of
the number of segments (S) present in the Human Segmented
Ground-Truths. It is consistent to the argument of Section 2.1, indicating
justifiable number of clusters (K) determination by the EF-Index.

7. Conclusion

This paper addresses a parameter-free algorithm which can deter-
mine the number of clusters K and hence the number of segments S
present in an image automatically. The EF-Index algorithm is effortless
to understand and implement, and it generates promising outcomes
for verities of images including the benchmark image datasets
BSDS300 [30], BSDS500 [30], and SBD [31]. The number of clusters
predicted by the proposed method closely correlates with those of the
state-of-the-art algorithms [10,11,13,14,23].

The only limitation of the proposed algorithm is its high noise
sensitivity. The number of cluster outcome may differ depending on
the presence of noise in the image.

Designing a noise immune number of cluster determination
algorithm would be an interesting task to be accomplished in future.
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