Expert Systems With Applications 116 (2019) 96-107

Expert Systems With Applications

Contents lists available at ScienceDirect T

Systems g
with
Applications §#

Ealor-n-Chiet
Binsnon U

journal homepage: www.elsevier.com/locate/eswa

Enhancement of robustness of face recognition system through )
reduced gaussianity in Log-ICA e

Mrinal Kanti Bhowmik?®*, Priya Saha? Anu Singha? Debotosh Bhattacharjee®,

Paramartha Dutta¢

aDepartment of Computer Science & Engineering, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India
b Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
¢ Department of Computer and System Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India

ARTICLE

Article history:

Received 13 January 2018
Revised 4 August 2018
Accepted 28 August 2018
Available online 29 August 2018

Keywords:
Gaussianity
Log-ICA

Log-normal distribution

Noisy face image

ABSTRACT

By reducing the gaussianity, Independent Component Analysis (ICA) behaves robustly in segregating in-
dividual signals of non-skewed characteristic from a mixed composite signal. In this article, we present
a next-generation variant of ICA, especially applicable in the skewed composite signal scenario, applying
the Logarithmic transformation on basic ICA, named as Log-ICA. This approach is capable of decreas-
ing overlapping probability densities of the composite signal, which, in turn, extracts more independent
components because of reduced gaussianity. Here also we use two different architectures Log-ICA I and
Log-ICA II corresponding to two variants of ICA architecture (ICA I and ICA II). We justify the effectiveness
of the proposed technique on five separate benchmark face datasets using five classifiers. Out of five face
datasets, two datasets contain both visible and thermal face images. Experimental results show that Log-
ICA I performs better than Log-ICA I and two variants of ICA for original face images and noise-induced

Overlapping probability densities face images.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The face recognition system has excellent potential in multime-
dia applications, e.g., human-machine interaction (Han, Otto, Liu,
& Jain, 2015), online social networks (Choi, Neve, Plataniotis, &
Ro, 2011; Ding & Tao, 2015), and digital entertainment. Face im-
ages in multimedia applications exhibit variations in pose (Yin
& Liu, 2018), expression (Hsieh, Lai, & Chen, 2009; Zen, Porzi,
Sangineto, Ricci, & Sebe, 2016), and illumination (Beveridge et al.,
2015). In this paper, we are considering face recognition under
all three variations using our proposed method named logarithmic
ICA or Log-ICA.

The goal of ICA is to decompose the input dataset into a set
of statistically independent components or as separate as possible.
ICA can isolate data from mixed sources by maximizing their non-
gaussianity. Non-gaussianity empowers the separation and iden-
tification of original components from the mixed source. Perfect
Gaussian sources cannot be separated by ICA. Previously, Bartlett
(Bartlett, Movellan, & Sejnowski, 2002) developed two ICA archi-
tectures for face recognition (ICA architecture I and ICA architec-
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ture II). The purpose of ICA architecture-I is to find statistically in-
dependent basis images, and ICA architecture-II is for finding fac-
torial face code. Liu (Liu, 2004) proposed an enhanced ICA (EICA)
method. EICA is computed in a reduced PCA space, and the di-
mension of the PCA space is computed by balancing the energy
and magnitude criterion for enhanced retrieval performance. The
proposed EICA method is experimented for content-based face im-
age retrieval using the FERET database. Bartlett et al. (2002) imple-
mented the infomax algorithm using a neural network approxima-
tion, while EICA applied a statistical algorithm (Liu, 2004) by de-
composing it into three significant steps (whitening, rotations, and
normalization). To reduce the effect of the dimensionality problem
in ICA, Zhang, Gao, and Zhang (2007) proposed a block ICA (BICA)
method. In BICA, the whole image is partitioned into equal size
blocks, and a common demixing matrix for all the blocks is cal-
culated. Experiment results suggest that BICA is computationally
more efficient than ICA and it achieves higher recognition accu-
racy than ICA. In two of our earlier works (Bhowmik, Bhattachar-
jee, Basu, & Nasipuri, 2012, 2011), we use the concept of Log-ICA
in one or other form for two specific purposes, dark image analysis
and expression analysis for the respective small subset of IRIS (DOE
University Research Program in Robotics, 2005) visual and thermal
face dataset.
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Fig. 1. (a) A and B are independent of each other; (b) A and B are partially over-
lapped to each other.

In this paper, we propose logarithmic ICA or Log-ICA, which
can enhance the property of non-gaussianity to achieve better in-
dependent component separation for face image datasets through
logarithmic transformation. Log-ICA tends the data towards non-
gaussianity by reducing overlapping area formed by their respec-
tive probability densities. Therefore, the data obtained follow log-
normal distribution and hence become skewed for our experimen-
tal datasets. In this work, we use face images available in the visual
and thermal domains and also obtain the fused face images from
those visual and thermal face images. The proposed system is also
tested for visual face images under three different types of noisy
situations namely additive, multiplicative, and impulse and found
to be robust against all the three noises.

The paper contributes in five ways.

e A new variant of ICA, i.e., Log-ICA is proposed to increase non-
gaussianity which is the basic principle for separation of inde-
pendent components in ICA.

o Applying logarithmic transformation, the overlapping area of
probability densities is reduced.

o Handling of difficult multiplicative noise becomes easier be-
cause multiplicative noise is converted into simpler additive
noise due to logarithmic transformation.

o Facial expression may be considered as one type of multiplica-
tive noise, and it is observed that the present method is capa-
ble of performing better in recognizing various expressions in
comparison to the basic ICA.
To establish the superiority of Log-ICA over other variants of
ICA, several experiments are conducted for face and expression
recognition. Depending on the availability of face images in the
existing datasets, experiments are carried out on visual, ther-
mal, and fused images with or without facial expressions. The
same set of experiments is repeated under the three noisy sit-
uations.

The rest of the paper is as follows. Section 2 depicts
the justification of logarithmic transformation and the Log-ICA.
Section 3 illustrates the system overview of the proposed ap-
proach. Section 4 reports and discusses experiment results on
benchmark databases. Finally, the conclusion is drawn in section 5.

2. Natural logarithm based ICA algorithm (Log-ICA)

According to the Central Limit Theorem (CLT), the defini-
tion of ICA says that the distribution of the sum of indepen-
dent components tends toward a Gaussian or Normal distribution
(Stone 2004Stone, 2004). The independent components can be ex-
tracted from a Gaussian mixture by making their linear transfor-
mation as non-gaussian as possible. For making the distribution
of samples towards non-gaussianity, we propose Log-ICA which is
based on the logarithmic transformation.

In this method, the independence property of individual com-
ponents present in a mixture is increased to achieve higher sepa-
rability. Suppose, A and B are two completely independent random
events.

In the Venn diagram of Fig. 1(a), events A and B are disjoint.
These events cannot both occur, so there is no overlapping area.

In the Venn diagram of Fig. 1(b), we want to show that two ran-
dom events A and B are not disjoint. This means that it is possible
for both events to occur, and the overlapping area represents this
possibility.

The idea of the overlapped area may work on following issues.

« In this paper, we consider the distribution of a large set of face
images as Gaussian.

The face images of different persons with different variations of
a dataset may have an equal mean, but their variances may not
be same because different class images (say, expression varia-
tions) have different orientations of pixel variations.

Here, the areas of two Log-Normal curves are denoted by
AN and A;y® respectively. Likewise, the areas of two Normal
curves are indicated by Ay(") and Ay respectively. We have to
prove that ALN(l)ﬂALN(Z) < AN(UﬁAN(z).

For a particular application, i.e., classification of face images
with a different pose, illumination, expression variations, the
proposition holds true.

Proposition. The overlapping area of two Log-Normal curves in com-
parison to Normal curves is less if the variability of data increases.

Proof. The overlapped area of the normal domain is denoted by Ay
(ANUNAN®?)) and the same for the log-normal domain is denoted
by An(ANUNAND). We prove that the overlapped area of log-
normal curves is less than the overlapped area of normal curves,
ie. )‘LN < )‘N'

The Fig. 2(a) shows two normally distributed curves with mean
u and standard deviation oqand o,for a random variablex. In a
normal distribution, the two curves intersect each other at a point
P and Q. We can write
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Fig. 2. (a) Normally distributed curves; (b) Log-normally distributed curves.
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In Fig. 2(b), two curves intersect each other at point P and Q in
a log-normal distribution.

2 2
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According to the definition of error function erf (x) (Whittaker
& Watson, 1990), the value of function is saturated i.e. it goes to 1
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Fig. 3. A graphical plot of overlapped area in normal and log-normal distribution.

after certain degree of variability for any value of x and
the value of erflu+k(oq1,0,2)) will become smaller than
erflexp (1 +Kk(01,02))).

Because of faster asymptotic convergence of exponen-
tial function compared to that of the linear counterpart,
(erfli +k(o1,02)) —erfi —k(01,02))) > (erflexp (1 + k(01,0 2)))
—erflexp (u —k(01,02)))).

Therefore, it can be concluded that the proposition holds true
after a certain degree of variability of data. If there is no variation
in data, then the technique is not applicable.

Hence, it is proved that A;y < Ap.

We can also prove this by plotting a graph between the over-
lapped area and sample values of ojando,. The bar chart is given
in Fig. 3.

It is noticed from Fig. 3 that the overlapped area of log-normal
curves is less than the overlapped area of normal curves, i.e. A;y <
An. It is evident from the discussion that log-normal distribution
helps to reduce the overlapped area (if any) between two random
variables.

The effectiveness of log-normal distribution is also proved here
by computing the error (E), given in (5), which is the sum of
squares of the difference between relative frequency histogram and
probability density function (pdf) of a particular distribution with
estimated parameters.

R 2
E=3"[060 - F0pn] - (5)

where h(x) is the relative frequency histogram, f(x) is the den-
sity estimation of a random variable and pq, p, are the estimated
parameters of the distribution. It is noticed in Fig. 4 that log-
normal distribution generates less error than four other distri-
butions namely Beta, Weibull, Gamma and Gaussian for the face
datasets IRIS, FERET, CMU-PIE and USTC-NVIE except Yale database.
Therefore, we use logarithmic transformation along with ICA to ex-
tract maximally independent components from a mixture of data
samples and to increase classification accuracy.

3. Proposed system overview

Fig. 5 presents the block diagram of our proposed approach
Log-ICA, which summarizes both architectures of ICA in the log-
arithm domain. In the pre-processing stage, the database face im-
ages are manually cropped, resized, and finally represented as a
row or a column data matrix followed by Log-ICA architectures
namely Log-ICA I and Log-ICA II. The proposed approach mainly
consists of two pre-processing stages. The first pre-processing stage
is log-centering that makes the distribution of data matrix to log-
Normal. Then, PCA is used to project face patterns from a high-
dimensional image space to low-dimensional space. The second

Average Induced Error
w

° IRIS FERET CMU-PIE USTC-NVIE YALE
M Beta 2.986 1489 5.036 1.853 1.809
W Log-Normal 2.897 1469 4924 1.785 19856
EWeibull 3.129 1539 5.014 1.895 1741
B Gamma 2984 1489 5.035 1853 1814
B Gaussian 3.256 1.786 5.864 2637 1824

Fig. 4. Errors of different distributions.

pre-processing stage is log-whitening that changes the scales of
variances instead of the unit variance. In the next stage, we invoke
the ICA algorithm for maximizing non-gaussianity as a measure of
statistical independence. The subspace obtained by ICA algorithm
is used to project individual face images of the database, and pro-
jected images are considered as corresponding feature vectors. The
optimality of the projection can be substantiated by the classifica-
tion standpoint. In the next sub-section, we illustrate the details of
Log-ICA.

3.1. Independent component analysis

Independent Component Analysis (ICA) is a generalization of
PCA technique that assigns data from a high-dimensional space
to a lower-dimensional space and decorrelates the higher-order
statistics (Hyvarinen, 1999). ICA contains a set of basis vectors with
maximum statistical independence whereas PCA deals with basis
vectors which are orthogonal to each other but do not ensure sta-
tistical independence. ICA for face recognition operates within one
of two different architectures, Architecture I and Architecture II.

ICA Architecture I presents the face images as a linear combina-
tion of a set of statistically independent basis images. To represent
the image for use in recognition, ICA makes use of the reconstruc-
tion coefficients of a face image that are derived from these basis
images. A given face dataset is organized into a data matrix, where
each row vector is a different image. In this approach, images are
random variables, and pixels are trials (Bartlett et al., 2002).

In ICA Architecture II, the face dataset is represented as a data
matrix where each column vector is a face image. The main differ-
ence between these two architectures is that ICA Architecture I is
talking about independence among face images, and ICA Architec-
ture II tells about independence among face pixels. For simplicity,
we use the terms ICA I and ICA I in place of ICA Architecture I and
ICA Architecture II respectively.

Some popular ICA algorithms include FastICA (Bartlett et al.,
2002; Hyvarinen, 1999), Infomax (Lee et al., 1999), Common'’s al-
gorithm (Comon, 1994), and Kernel ICA (Bach & Jordan, 2002). In
this paper, we use FastICA for implementation of ICA I, ICA II, Log-
ICA I, and Log-ICA 1.

The FastlICA is based on a fixed-point iteration scheme
(Belhumeur, Hespanha, & Kriegman, 1997) for finding the direction
of the weight coefficient vectorWsuch that the projection y=WTX
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Fig. 5. Block diagram of Log-ICA.

maximizes non-gaussianity for the data matrixX. To computeW,
the non-quadratic function (G) (Phillips, Martin, Wilson, & Przy-
bocki, 2000) used here is given as

2
G() =—exp (—yz) (6)

3.2. The proposed Log-ICA algorithm

We propose two versions of Log-ICA algorithm namely Log-ICA
I and Log-ICA 1I based on two architectures of ICA. The whole al-
gorithm is similar for Log-ICA I and log-ICA II except step 1 and
step 2. Therefore, we present the detailed procedure of Log-ICA I
algorithm.

Algorithm. Log-Independent Component Analysis (Log-ICA I)

Input: n number of 2D face images x; € %W *for i=1, 2, .., n; where p and q
indicates the row and column numbers respectively. The number of desired
components is d.

Output: Feature space S.

1. Convert each face image (x;) as a vector of size m=p x q.

2. Create a data matrix X =[X;,X3,..., X]T € |*™,

3. (a) To make a zero-mean (zm) or center the data matrix X in a trial space
R™ by subtracting the mean column vector (1) from each observation %" as:

n
Xm= 2 2%~ D% =X —E(X) =X — .
i= 1 i=1

(b) Convert the zero-mean variables into the logarithmic domain, so the
resulting log-centered (X ) is as follows:

X, j) = m log(1 + abs(Xzm (i, j)))max _valueis the maximum
value of X;p,.

4. In this step, whitened matrix (R,) is computed as it is done in basic ICA and
after that logarithmic transformation is taken to obtained log-whitening matrix
(le)

(a) Calculate the orthonormal eigenvectors V=[o1,&7,..., aq] € %"*¢ of the
covariance matrix )~ = %X,CX,Zcorresponding to the largest d positive
eigenvalues A; > A, > .. > A4, and a matrix of its eigenvalues

U-'2 = diag(A;'2, ..., A7),

(b) Obtain the whitened data matrix as R, =(VU~12)TX, R,, € ®dxm

(c) Convert the whitened variable into the logarithmic domain, so the resulting
log-whitening data matrix (R, ) is as follows:

Riw (i, j) = m log(1 + abs(Rw (i, j)))

such that E{R,R], } = D where D is a diagonal matrix.

5. Generate an unmixing square matrix W e %¢*¢ and an independent basis
image space S=WR,, through FastICA.

The algorithmic steps are described below.

The arrangement of face image (Steps 1-2): The conversion
of each 2D face image (x;) to 1D block reshapes a p-by-q matrix
to a 1D vector with length m=p x q. Then, a 2D data matrix X is
created by combining all the converted 1D vectors as rows of X.

However, in the case of ICA II, 1D image vectors are stored in the
columns of the data matrix.

Transformation of centered data to the logarithmic domain,
i.e., log-centered (Steps 3.a-3.b): The most basic and essential pre-
processing is to center X, i.e., subtract its mean vector u = E(X) to
make Xa zero-mean variable.

This preprocessing is made solely to simplify the ICA algo-
rithms. In this stage, the distribution of data matrix follows the
standard Gaussian distribution according to Central Limit Theorem
(CLT). In a practical scenario, the distribution of the data matrices
is not gaussian somewhat arbitrary. In the case of ICA, the distribu-
tion should be non-gaussian and to ensure that, in this method, the
logarithmic transformation is applied to the centered data, which
is called log-centering of data.

Creation of Diagonal Matrix through the transformation
of log-whitening (Steps 4.a-4.c): The second pre-processing ap-
proach of ICA is to whiten the observed variables such that its
components are uncorrelated and their variances are equal to
unity, i.e., the covariance matrix would be an identity matrix
(Hyvdrinen, Karhunen, & Oja, 2002). After whitening step, loga-
rithmic transformation is applied to change the scales of vari-
ances instead of unit variance preserving the property of uncor-
relation among the variables. However, the core motive of this
log-whitening aids in increasing non-overlapping of density curves
for the respective observed variables by differing variance val-
ues. The whitened covariance matrix (Fig. 6(b)) is exactly follow-
ing the identity matrix by same diagonal values with yellow color
cells, and rest of the cells contain values near to zero with purple
color. The Fig. 6(c) is representing a covariance matrix of the log-
whitening with the values of the diagonal cells of several colors
which is an indication of a diagonal matrix. The values of the rest
of the cells are almost zero except few of them.

Generation of independent subspace (Step 5): Subspace anal-
ysis techniques are widely used in face recognition (Bartlett et al.,
2002; Liu, 2004; Zhang et al., 2007). Step 5 presents a subspace
representation of face images which is learned through the FastICA
algorithm for maximizing non-gaussianity as a measure of statisti-
cal independence.

3.3. Projection of face images

Any face image (x) given to the system for recognition goes
through log-centering (x,.) and then projected into the indepen-
dent subspace S to obtain the feature vector (¥), in (7).

xf = XICST (7)
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(a)

Fig. 6. Log-Whitening Transformation (a) original log-centered covariance matrix (b) whitened covariance matrix (c) log-whitened covariance matrix.
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Fig. 7. Three class separation in ICA and Log-ICA.

3.4. Projected feature separation

To illustrate the effectiveness of Log-ICA in class separation, we
consider a small subset of the IRIS face dataset to have a simple
visualization of separation. We randomly choose three images for
each of the three expressions for three arbitrary subjects, a total of
27 face images. An independent subspace is created for these 27
face images, and each of these images is projected into the sub-
space. The subspace creation and projection of the individual im-
age is shown in Fig. 7 for ICA I, Log-ICA [, ICA II, and Log-ICA II. It
is observed that Log-ICA II is more efficient than the ICA I, ICA II,
and Log-ICA I to make the three categories separable in projection
space.

4. Experimental results and discussions

The present method is evaluated on four distinct tasks: (a)
Recognition of visual and thermal face images, (b) Recognition of
facial expressions from visual and thermal face images, (c) Face
recognition from fused images of thermal and visual face images
and (d) Facial expression recognition from fused images of ther-
mal and visual face images. Visual face recognition is evaluated on
CMU Pose, Illumination, and Expression (CMU-PIE) database, Facial
Recognition Technology (FERET) and YALE face datasets. The IRIS
(Imaging, Robotics, and Intelligent Systems) Infrared (IR)/Visible
face dataset and USTC-NVIE (Natural Visible and Infrared facial Ex-
pression) face datasets are used for visual and thermal face recog-
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Fig. 8. Sample visual face images of (a) FERET (b) YALE (C) CMU-PIE database.

nition, facial expression recognition and fused face recognition
purposes. Visual facial expression recognition experiment is also
conducted on Japanese Female Facial Expression (JAFFE) database,
Cohn-Kanade AU-Coded Expression Database (CK), and Compound
Facial Expressions of Emotion (CFEE) databases.

CMU-PIE dataset (Sim, Baker, & Bsat, 2003) contains 41,368 im-
ages of 68 people. The face image of each person is captured under
13 different poses, 43 different illumination conditions, and with
four different expressions.

FERET face database (Phillips, Wechsler, Huang, & Rauss, 1998)
contains 1564 sets of images for a total of 14,126 images that in-
cludes 1199 individuals and 365 duplicate sets of images. A du-
plicate set is the second set of images of a person already in the
database and was usually taken on a different day.

YALE database (Georghiades, Belhumeur, & Kriegman, 2001)
comprises 165 GIF images of 15 subjects. There are 11 face images
per subject with different expressions or configurations. The sam-
ple visual face images of three different databases are shown in
Fig. 8.

IRIS Visual/Thermal face database (DOE University Research
Program in Robotics, 2005) contains face images of 30 individu-
als. Total 4228 pairs of IR and visual images are there, and total
176-250 images/person are captured with 11 images per rotation
(poses for each expression and each illumination). The subjects are
recorded in three different expressions Ex1 (Surprised), Ex2 (laugh-
ing), Ex3 (Anger) and mainly five different illuminations with vary-
ing poses. In this paper, we consider the expression dataset of total
660 face images with 20 classes and 33 images per class and the
illumination dataset of 17 classes with total images of 748 with 44
images per class.

The USTC-NVIE Visual/ Thermal face dataset (Wang et al., 2010)
contains only three expressions (surprise, happiness, and anger).
Each expression has nine images including three frontal, three ori-
ented toward the left and three right oriented poses. We con-
sider face images without glass only from both visual and infrared
datasets. A total number of classes is 30. There are total 270 face
images of 30 individuals.

The JAFFE database (Lyons, Akamatsu, Kamachi, & Gyoba, 1998)
images are taken at Kyushu University, Japan. Tungsten lights are
positioned to create evenly illuminated face images. Ten persons

pose themselves for three or four examples of each of the six basic
facial expressions, namely, happiness, sadness, surprise, anger, dis-
gust, and fear, along with a neutral face for a total of 219 images
of facial expressions.

The CFEE database (Du, Tao, & Martinez, 2014) contains expres-
sive face images of 230 human subjects. Total 21 different expres-
sions were captured. Other than basic, compound expressions were
also included in this database.

The CK Database (Kanade, Cohn, & Tian, 2000) includes 486 se-
quences from 97 posers. Each sequence starts with a neutral ex-
pression and continues to a peak expression. The peak expression
of each sequence is fully FACS coded and given an emotion label.
Subjects perform a series of 23 facial displays that included a sin-
gle action unit and combinations of action units.

The proposed method is compared to the two architectures of
ICA with the combination of five different classifiers. K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Linear Discrim-
inant Analysis (LDA), Decision tree, and Random forest. The face
images are manually cropped and resized to 50 x 50 pixels. For all
three kinds of experiments, 10-fold cross-validation is used. The
value of K is 7 in the KNN classifier, and SVM classification is con-
ducted with the help of a polynomial kernel with degree 2.

4.1. Face recognition experiment

The visual face recognition experiment is conducted on all five
face datasets. The thermal IR face recognition is performed only
on two datasets: IRIS and USTC_NVIE face datasets. We conduct
the face recognition experiments on five datasets separately. The
recognition rates for different face datasets are listed in Table 1.

4.1.1. Face recognition on CMU-PIE datasets

For the task of face recognition, experiments aim to investigate
the performance of our method compared to two architectures of
ICA using five different classifiers. Here, we choose 300 expressive
face images and 1000 illuminated face images of 10 individuals
from CMU-PIE dataset. The face images contain different poses. We
perform experiments on both expression and illumination datasets
separately.

We list the recognition rates of ICA I, ICA II, Log-ICA I and Log-
ICA 1 with five different classifiers in Table 1. The performance
measure shows that Log-ICA II with SVM generates a better re-
sult than rest other methods in case of expression face dataset. The
performance of Log-ICA is worst when it combines with a decision
tree.

The performance of SVM is superior to LDA, KNN, and Random
Forest with the combination of Log-ICA. Though the recognition
rate is too low in illumination dataset, it is noticed that Log-ICA
I and Log-ICA Il perform better than ICA-I and ICA II. Here, LDA
achieves a better result than others. Like the expression dataset,
here also decision tree is the worst performer. The reason behind
the low recognition rate may be the strong illumination variation
in face images, which is not compensated by the Log-ICA algo-
rithm. However, Log-ICA obtains a better result than both archi-
tectures of ICA in illumination dataset.

4.1.2. Face recognition on FERET dataset

From the subset of gallery 1196 images, we select entire 539
face images of 34 subjects in our experiment.

The results show that the recognition rate is very low for all
classifiers. Besides, Log-ICA Il with LDA achieves 59.3% accuracy
which is very close to the accuracy of ICA II with LDA (59.23%).
Similarly, Log-ICA-I and ICA-I generate almost similar result in
combination with LDA. The classification result of SVM is slightly
better than the rest three classifiers (KNN, decision tree, and ran-
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Face recognition rates for different face datasets.

Method Database Accuracy (%)
Arch-I Arch-II
Non-Logarithm Logarithm Non-Logarithm Logarithm
\ T F \ T F \ T F \% T F
ICA+SVM CMU-PIE (Exp)  90.66 90.33 95.33 95.89
CMU-PIE (Illu) 45.6 49.8 53.2 49.8
FERET 44.6 49.6 48.84 48.96
YALE 72 76 74.66 74.89
IRIS (Exp) 8766  79.54 8876  88.18 8499 90.75 88.17 85.51 88.93  90.51 85.82  90.99
IRIS (Illu) 96.22  95.71 9724 9640  96.41 9748  96.78  96.81 9849 96.86 9694  98.78
USTC-NVIE 9444 9074 9554 9592 9592 9699 974 974 97.77 974 974 98.4
ICA+LDA CMU-PIE (Exp) 87.33 87.33 86.66 87.33
CMU-PIE (Illu) 53 54 53 54
FERET 57.69 57.96 59.23 59.3
YALE 8133 8133 89.33 89.33
IRIS (Exp) 8893  80.75 90.14 90.6 80.93 9145 89.08 7999  91.05 9042  79.99 9160
IRIS (Illu) 9590 94.08 9595 9593 9513 96.01 9587 94.86 9598  96.10 94.58  96.45
USTC-NVIE 98.51 974 98.51 98.73 99.62 98.81 98.51 98.14 98.88  98.51 98.14 99.62
ICA+KNN CMU-PIE (Exp)  59.33 64.66 72 72
CMU-PIE (Illu) 28 348 36.8 36.8
FERET 35 36.08 35.38 35.53
YALE 52 70.66 7733 78.46
IRIS (Exp) 79.69 7454 8029  80.2 7514 8272 8333 8151 8499 8393 8227 86.05
IRIS (Illu) 90.37 9053  91.07 90.72 9098 9125 87.80  91.36 93.55 8822 9234 9445
USTC-NVIE 90.73 8703 94.07 8899 9181 9625 8999 9629 97.03 91.14 96.59  97.51
ICA + Decision Tree CMU-PIE (Exp)  36.66 44 4533 47
CMU-PIE (Illu) 174 25.8 242 26.9
FERET 223 22.07 223 23.53
YALE 38.66 46.66 48 57.33
IRIS (Exp) 50.3 4045 503 50.3 4096 50.75 6136 4423  56.81 80.73  86.96  91.07
IRIS (Illu) 61.80 6396  61.27 60.41 63.58 6139 56.94 5742 61.32 56.05 5747 61.13
USTC-NVIE 67.51 65.55  67.03 68.51 65.65 69.62 80.73 8666 89.62 80.73 86.96  91.07
ICA+Random Forest =~ CMU-PIE (Exp)  63.33 80.66 86 84.66
CMU-PIE (Illu) 28.6 33.6 39.8 40.6
FERET 38.07 40 4115 42
YALE 53.33 64 72 74.66
IRIS (Exp) 79.69 7454 80.29 80.2 75.14 8272 9332 9481 9592 8393 8227 86.05
IRIS (Illu) 8395 89.19 8767  86.1 90.04 90.65 8943 9459 9395 8993 9468 94.72
USTC-NVIE 86.29 9147 9392 8555 89.62 937 9332 9481 9592 9425 9536 9598

dom forest). The accuracy improvement is noticed in Log-ICA II for

all the classifiers.

4.1.3. Face recognition on YALE dataset
We consider all 150 face images of 10 subjects where each sub-

ject contains 10 face images excluding glass based face images
from each subject. The performance shows that the highest accu-
racy 89.33% is obtained using both ICA II and Log-ICA II with the
help of LDA. The performance improves in Log-ICA I and II for the
rest other cases. The result of ICA I is highly improved when face
images are classified using KNN (18.66% improvement) and Ran-
dom Forest (10.67% improvement). The classification accuracy of
the decision tree is the poorest for both architectures.

It is noticed from the evaluation results of three different
databases that the decision tree does not perform well. The reason
may be continuous real-valued features of ICA I and ICA II, which
are not well suited for decision trees.

4.14. Face recognition on IRIS visual/thermal dataset

The database contains the expression dataset, which consists of
total 660 face images of 20 persons and the illumination dataset
which includes face images of 17 persons with total images of
748. The database comprises both visual and thermal infrared face
images. Therefore, we conduct face recognition on both modali-
ties and perform classification on fused face images also. Illumi-
nation variation can be compensated using multisensor image fu-
sion technique, which may provide a better recognition rate than a
single modality.

{c) Fused face images

Fig. 9. Sample face images of IRIS database (a) Visual, (b) Thermal, (c) Fused Face
Images.

Here, the fusion is carried out based on pixel level fusion
scheme where 50% information is taken from the visual face im-
age and rest 50% information comes from the thermal face image.
In pixel level fusion, the fusion of pixels can be done by pixel-
wise weighted summation of visual and infrared (IR) images. Fig. 9
presents some sample face images of IRIS face database as well
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(a) Visual face images

(b) Thermal face images

(c) Fused face images

Fig. 10. Sample face images of USTC-NVIE database (a) Visual, (b) Thermal, (c)
Fused Face Images.

as fused face images of the corresponding visual and thermal face
images.

The fused face image recognition rates, tabulated in Table 1,
clearly indicate better recognition rate than individual face recog-
nition performance. The Log-ICA I with LDA achieves the highest
accuracy (90.6%) for visual face recognition, and Log-ICA II with
SVM obtains 85.82% maximum accuracy for thermal face recogni-
tion. However, Log-ICA I with LDA generates maximum accuracy
(91.6%) for fused face images where corresponding visual and ther-
mal face recognition rate is 90.42% and 79.99% respectively. We
conduct visual, thermal as well as fused face recognition to en-
sure the effectiveness of Log-ICA over ICA in both architectures.
The thermal face recognition results indicate that Log-ICA can han-
dle face images of other modalities also.

4.1.5. Face recognition on USTC-NVIE face dataset

We consider without glass based face images from both visual
and infrared modality. The total number of subjects is 30. There
are total 270 face images of 30 individuals. The visual, thermal and
corresponding fused face images are shown in Fig. 10.

Observations reveal that the highest accuracy is obtained
through Log-ICA II and LDA in all three cases. The classification ac-
curacy of ICA Il and LDA is almost similar to Log-ICA II and LDA.
The recognition rate of fused face images is better than individ-
ual modalities. One interesting observation is noticed here that the
recognition rate for thermal face images is higher than the recog-
nition rate for visual face images in most of the cases.

4.2. Facial expression recognition experiment

The expression recognition experiments are conducted on five
different facial expression datasets namely IRIS visual/thermal face
database, USTC-NVIE face dataset, Cohn-Kanade (CK), Compound
Facial Expressions of Emotion (CFEE) and Japanese Female Facial
Expression (JAFFE) database. First two datasets are already intro-
duced earlier, and five expressive face images from each of the
three newly included face datasets are shown in Fig. 11. In our ex-
periment, we consider all six basic expressions namely anger, dis-
gust, fear, happy, surprise and sad. The facial expression recogni-
tion accuracies for all five databases are listed in Table 2.

©

Fig. 11. Sample visual expressive face images of (a) CK (b) CFEE (c) JAFFE database.

4.2.1. Facial expression recognition on CK dataset

We randomly select facial expressions of different persons. Ex-
periment results indicate that Log-ICA I is not effective for rec-
ognizing expressions in comparison to Log-ICA II. Though the ex-
pression recognition rate is low enough, accuracy improves notice-
ably in the case of Log-ICA II extracted features. The performance
of Log-ICA 1I is lower than ICA Il when combined with LDA. The
performance improvement is noticed in Log-ICA Il in combination
with the classifiers SVM, KNN, Decision Tree, and Random Forest.
The maximum accuracy (49.81%) is attained through Log-ICA II and
SVM in this database.

4.2.2. Facial expression recognition on JAFFE dataset

We consider frontal expressive face images of ten subjects for
our experiment. From the Table 2, it is evident that like the pre-
vious one, here also Log-ICA I does not make any improvement
over ICA L. The accuracy of Log-ICA 1I is almost similar to ICA II
in combination with SVM and LDA. ICA II with SVM achieves only
0.84% higher accuracy than Log-ICA I, and this recognition rate is
the highest rate for this dataset. Huge performance improvement
(more than 23%) is observed in the combination of Log-ICA Il and
Random Forest in comparison to ICA II. Decision tree also performs
better for Log-ICA II than ICA IL

4.2.3. Facial expression recognition on CFEE dataset

We choose six basic expressions of 50 subjects from the
database. The classifier SVM achieves the highest accuracy for ICA
Il extracted features. The accuracy of Log-ICA Il improves 7.78% and
4.45% for LDA and KNN respectively. The performance of Log-ICA |
slightly improves when it combines with LDA and Decision Tree.

4.2.4. Facial expression recognition on IRIS dataset

In the IRIS dataset, each expression contains 11 face images.
We perform expression recognition experiment on visual, thermal
and fused face images. It is observed from the experiment that
fused facial expression recognition rate is lesser than the individ-
ual modality expression recognition rate. The overall recognition
rate is also meager.

The performance of Log-ICA I is slightly better in the case of
fused facial expression recognition than ICA II for all the classifiers
except SVM. In combination with SVM and LDA, Log-ICA I shows
accuracy improvement than ICA I. The reason behind the too low
recognition rates may be the inclusion of pose variations with each
expression for each subject in experimental dataset. Pixel level fu-
sion may not be effective enough for expression recognition.

4.2.5. Facial expression recognition on USTC-NVIE dataset
We select 360 face images for 20 subjects in our experiment.
Each expression has three face images. In this database also, Log-
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Table 2
Facial expression recognition rates for different face datasets.

Method Database Accuracy (%)
Arch-I Arch-II
Non-Logarithm Logarithm Non-Logarithm Logarithm
\% T F \% T F \% T F \Y T F
ICA+SVM CK 31.90 31.90 4339 49.81
CFEE 52.38 51.95 64.55 63.44
JAFFE 64.16 64.16 78.5 7766
IRIS 246 219 1763 226 217 178 1638 2027 1694 1638 1861 1638
USTC-NVIE ~ 20.83  27.5 2625 2041 2291 2416 4838 5241 6091 4166 5483 5166
ICA+LDA CK 22.85 22.85 4528 39.62
CFEE 41.42 4238 53.33 61.11
JAFFE 45 4416 76.66 75
IRIS 2333 25 18 2866 23 2133 17 22 20 22 26 21
USTC-NVIE 2041 2166 2416 1791 2125 1958 4083 4166 4916 3166 40 40.83
ICA+KNN CK 22.85 22.85 33.96 4339
CFEE 4142 4142 46.66 5111
JAFFE 425 4166 56.66 46.66
IRIS 2066 23 2166 1966 1666 17 1933 1733 14 2033 1766  16.66
USTC-NVIE 22,5 1541 225 1958 15 2208 4666 35 45 45 35 375
ICA + Decision Tree CK 13.14 1152 2113 3150
CFEE 21.09 2138 31.77 3011
JAFFE 23 22.33 24.66 39.16
IRIS 2783 285 2763 23 2166 2123 2193 204 1723 227 2346 2046
USTC-NVIE 1358 1587 1625 1329 1570 1354 2433 30 2491 2583 3208 27
ICA + Random Forest ~ CK 23.32 22.66 29.62 43.01
CFEE 31.90 31.57 4438 4411
JAFFE 34 33.25 405 63.16
IRIS 204 2406 1996 1293 156 1263 132 1346 1206 14 1493 1246
USTC-NVIE 2041 2166 2416 1791 2125 1958 4083 4166 4916 3166 40 40.83
ICA does not become efficient enough to improve the performance Table 3
of ICA. The maximum accuracy (60.91%) is achieved through ICA Facial recognition rates for different face datasets in noise.
II with SVM in recognizing fused facial expressions. Except ICA II Noise Database Accuracy
combined with SVM and LDA, it is noticed that fused facial ex- ICA Tl Log-ICA I
pression recognition rate is higher than visual one but lower than JE———— USTCNVIE oada 9666
thermal. The high accuracy in thermal facial expression recogni- aussian (Additive) FEREL 5 1538
tion indicates that thermal face image contains more informative YALE 74.66 78.66
features than visual one and as a result, fused images add impor- CMU-PIE (Exp) 87.33 90
tant thermal features in it resulting in higher recognition rate than CMU-PIE (Illum) 432 46
visual facial expressions. IRIS (Exp) 8530 90.90
F the experimental results, wi n that noticeabl I- IRIS (fllum) 95.58 943>
rom the experimental results, we can say that noticeable per- Salt&Paper USTC-NVIE 94.44 95.55
formance improvement occurs using Log-ICA II in case of expres- FERET 4423 48.84
sion recognition. Therefore, we consider facial expression as a mul- YALE 7333 77.33
tiplicative noise of face image, which is converted into additive EMH‘EE (lEl)l(P) %33 2;
noise using Logarithmic transform. We describe the association be- RIS ('EXP)( um) 8651 89.09
tween facial expression and multiplicative noise in Appendix. IRIS (Mllum) 95.96 95.58
Speckle (Multiplicative) USTC-NVIE 94 96.66
4.3. Noisy visual face recognition experiment FERET 4461 45.76
YALE 66.66 76
. . CMU-PIE (Exp) 88.66 92.66
The. r.obustnes.s of our. proposed approe.lch is ensureq with tl?e CMU-PIE (Illum) 414 16.8
recognition of noisy face images. Three noise types are induced in IRIS (Exp) 83.18 89.54
our visual face image datasets, which are Gaussian noise, impulse IRIS (Illum) 96.36 95.88

noise, and multiplicative noise. The experiment is conducted for
a noise variance of 0.04 (applicable for Gaussian and multiplicative
noise). In the case of impulse noise, the noise density is 0.04. From
the previous recognition results, it is noticed that Log-ICA II per-
forms better than Log-ICA I In this experiment, we consider only
Log-ICA 1I for noisy face image recognition. Accuracy improvement
is noticed in Log-ICA II for all face datasets except IRIS (Illum) in
Table 3. Accuracy is improved for all three types of noises.

4.4. Comparative study
We compare our proposed method Log-ICA with two enhanced

versions of ICA. As we conduct experiments on five different face
datasets, we only consider one face dataset, i.e., Yale face dataset

for comparison purpose. The comparative study in Table 4 shows
that Log-ICA II performs better than previous ICA based algorithms
(EICA and BICA).

5. Conclusion and future work

An approach to face recognition using natural Logarithm based
Independent Component Analysis (Log-ICA) is presented here. We
demonstrate the efficiency of our approach on different face
datasets, which contains images gathered with varying lighting, fa-
cial expression, pose. In this paper, human face images of vary-
ing expressions are also recognized using five different classifiers.
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Table 4
Comparative study.

Method Face Recognition Accuracy (Yale Face dataset)
EICA (Liu, 2004) 68.89%
BICA (Zhang et al., 2007) 75.56%

ICA I+ KNN 52%

ICA 1T+ KNN 77.33%
Log-ICA I+ KNN 70.66%
Log-ICA 11+ KNN 78.46%

We highlight the enhanced result of Log-ICA II in combination with
different classifiers, which is comprehended through the accuracy
rate. The proposed method is robust enough in recognizing noisy
face images. The overall expression recognition rate is low for both
ICA and Log-ICA. However, noticeable improvement is seen in Log-
ICA 1I in recognizing expressions that ensures that Log-ICA II is
suitable enough for expression recognition. In the future, it would
be interesting to work with complicated face datasets like low res-
olution and occluded face images.
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Appendix

Representation of facial expression as multiplicative noise

Facial expression can be expressed using the parameters of an
Active Appearance Model (AAM). AAM represents displacements
from the origin in the space spanned by the model. If we multiply
the parameters by a scalar greater than unity, the distance from
the mean is increased. Therefore, facial expression can be mapped
and manipulated using the AAM parameters and expressed as (8).

m
S=So+ ) SiPa (8)
i=1
The shape S is defined as the concatenation of the x and y co-
ordinates of n landmark points of the face image.
S=(X1.Y1.X2 Y20 Xn¥n)T and P=(pq,p2..... pn)’ is the shape
parameter vector that represents expression variations. The base
shape Sy is the mean shape and the vectors S; are the reshaped
Eigenvectors corresponding to the m largest Eigenvalues.
Now if we apply natural logarithm operator on both sides of
(8), it becomes

m
log(S) = log [ So+ Y _ SiPy

i=1
log(S) = log(Sp + B)

log(S) = log(So) + log(B/So + 1)
log(S) = log(So) + log(B1 + 1)
log(S) = log(So) + log(B,) (9)

We can say from (8) that the vector B, comprises principal
components of an expressive face image which may be the im-
portant features responsible for generating facial expressions. This
means that when these important features are appended with the
neutral face image, the face becomes expressive.

Multiplicative noise is represented by multiplication of original
image u and noise n. The recorded image g can be written by

g=uxn (10)

Here, u, g and n are n? x 1 vector corresponding to n x n image.
If we apply natural logarithm operator on both sides of (10), we
get

log(g) = log(u) + log(n) (11)

By comparing (9) and (11), we can say that expressive facial
features can be taken as a multiplicative noise for face images.
Therefore, when faces are expressive, recognition of those face im-
ages becomes difficult. The face images with expression, which are
also considered as multiplicative noise over neutral face images,
become easier to handle as logarithmic transformation converts a
multiplicative noise into an additive noise.
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