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a b s t r a c t 

By reducing the gaussianity, Independent Component Analysis (ICA) behaves robustly in segregating in- 

dividual signals of non-skewed characteristic from a mixed composite signal. In this article, we present 

a next-generation variant of ICA, especially applicable in the skewed composite signal scenario, applying 

the Logarithmic transformation on basic ICA, named as Log-ICA. This approach is capable of decreas- 

ing overlapping probability densities of the composite signal, which, in turn, extracts more independent 

components because of reduced gaussianity. Here also we use two different architectures Log-ICA I and 

Log-ICA II corresponding to two variants of ICA architecture (ICA I and ICA II). We justify the effectiveness 

of the proposed technique on five separate benchmark face datasets using five classifiers. Out of five face 

datasets, two datasets contain both visible and thermal face images. Experimental results show that Log- 

ICA II performs better than Log-ICA I and two variants of ICA for original face images and noise-induced 

face images. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The face recognition system has excellent potential in multime-

dia applications, e.g., human-machine interaction ( Han, Otto, Liu,

& Jain, 2015 ), online social networks ( Choi, Neve, Plataniotis, &

Ro, 2011; Ding & Tao, 2015 ), and digital entertainment. Face im-

ages in multimedia applications exhibit variations in pose ( Yin

& Liu, 2018 ), expression ( Hsieh, Lai, & Chen, 2009; Zen, Porzi,

Sangineto, Ricci, & Sebe, 2016 ), and illumination ( Beveridge et al.,

2015 ). In this paper, we are considering face recognition under

all three variations using our proposed method named logarithmic

ICA or Log-ICA. 

The goal of ICA is to decompose the input dataset into a set

of statistically independent components or as separate as possible.

ICA can isolate data from mixed sources by maximizing their non-

gaussianity. Non-gaussianity empowers the separation and iden-

tification of original components from the mixed source. Perfect

Gaussian sources cannot be separated by ICA. Previously, Bartlett

( Bartlett, Movellan, & Sejnowski, 2002 ) developed two ICA archi-

tectures for face recognition (ICA architecture I and ICA architec-
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ure II). The purpose of ICA architecture-I is to find statistically in-

ependent basis images, and ICA architecture-II is for finding fac-

orial face code. Liu ( Liu, 2004 ) proposed an enhanced ICA (EICA)

ethod. EICA is computed in a reduced PCA space, and the di-

ension of the PCA space is computed by balancing the energy

nd magnitude criterion for enhanced retrieval performance. The

roposed EICA method is experimented for content-based face im-

ge retrieval using the FERET database. Bartlett et al. (2002) imple-

ented the infomax algorithm using a neural network approxima-

ion, while EICA applied a statistical algorithm ( Liu, 2004 ) by de-

omposing it into three significant steps (whitening, rotations, and

ormalization). To reduce the effect of the dimensionality problem

n ICA, Zhang, Gao, and Zhang (2007) proposed a block ICA (BICA)

ethod. In BICA, the whole image is partitioned into equal size

locks, and a common demixing matrix for all the blocks is cal-

ulated. Experiment results suggest that BICA is computationally

ore efficient than ICA and it achieves higher recognition accu-

acy than ICA. In two of our earlier works ( Bhowmik, Bhattachar-

ee, Basu, & Nasipuri, 2012, 2011 ), we use the concept of Log-ICA

n one or other form for two specific purposes, dark image analysis

nd expression analysis for the respective small subset of IRIS ( DOE

niversity Research Program in Robotics, 2005 ) visual and thermal

ace dataset. 

https://doi.org/10.1016/j.eswa.2018.08.047
http://www.ScienceDirect.com
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Fig. 1. (a) A and B are independent of each other; (b) A and B are partially over- 

lapped to each other. 
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In this paper, we propose logarithmic ICA or Log-ICA, which

an enhance the property of non-gaussianity to achieve better in-

ependent component separation for face image datasets through

ogarithmic transformation. Log-ICA tends the data towards non-

aussianity by reducing overlapping area formed by their respec-

ive probability densities. Therefore, the data obtained follow log-

ormal distribution and hence become skewed for our experimen-

al datasets. In this work, we use face images available in the visual

nd thermal domains and also obtain the fused face images from

hose visual and thermal face images. The proposed system is also

ested for visual face images under three different types of noisy

ituations namely additive, multiplicative, and impulse and found

o be robust against all the three noises. 

The paper contributes in five ways. 

• A new variant of ICA, i.e., Log-ICA is proposed to increase non-

gaussianity which is the basic principle for separation of inde-

pendent components in ICA. 
• Applying logarithmic transformation, the overlapping area of

probability densities is reduced. 
• Handling of difficult multiplicative noise becomes easier be-

cause multiplicative noise is converted into simpler additive

noise due to logarithmic transformation. 
• Facial expression may be considered as one type of multiplica-

tive noise, and it is observed that the present method is capa-

ble of performing better in recognizing various expressions in

comparison to the basic ICA. 
• To establish the superiority of Log-ICA over other variants of

ICA, several experiments are conducted for face and expression

recognition. Depending on the availability of face images in the

existing datasets, experiments are carried out on visual, ther-

mal, and fused images with or without facial expressions. The

same set of experiments is repeated under the three noisy sit-

uations. 

The rest of the paper is as follows. Section 2 depicts

he justification of logarithmic transformation and the Log-ICA.

ection 3 illustrates the system overview of the proposed ap-

roach. Section 4 reports and discusses experiment results on

enchmark databases. Finally, the conclusion is drawn in section 5 .

. Natural logarithm based ICA algorithm (Log-ICA) 

According to the Central Limit Theorem (CLT), the defini-

ion of ICA says that the distribution of the sum of indepen-

ent components tends toward a Gaussian or Normal distribution

 Stone 2004 Stone, 2004). The independent components can be ex-

racted from a Gaussian mixture by making their linear transfor-

ation as non-gaussian as possible. For making the distribution

f samples towards non-gaussianity, we propose Log-ICA which is

ased on the logarithmic transformation. 

In this method, the independence property of individual com-

onents present in a mixture is increased to achieve higher sepa-

ability. Suppose, A and B are two completely independent random

vents. 

In the Venn diagram of Fig. 1 (a), events A and B are disjoint.

hese events cannot both occur, so there is no overlapping area.
n the Venn diagram of Fig. 1 (b), we want to show that two ran-

om events A and B are not disjoint. This means that it is possible

or both events to occur, and the overlapping area represents this

ossibility. 

The idea of the overlapped area may work on following issues. 

• In this paper, we consider the distribution of a large set of face

images as Gaussian. 
• The face images of different persons with different variations of

a dataset may have an equal mean, but their variances may not

be same because different class images (say, expression varia-

tions) have different orientations of pixel variations. 
• Here, the areas of two Log-Normal curves are denoted by

A LN 
(1) and A LN 

(2) respectively. Likewise, the areas of two Normal

curves are indicated by A N 
(1) and A N 

(2) respectively. We have to

prove that A LN 
(1) ∩ A LN 

(2) < A N 
(1) ∩ A N 

(2) . 
• For a particular application, i.e., classification of face images

with a different pose, illumination, expression variations, the

proposition holds true. 

roposition. The overlapping area of two Log -Normal curves in com-

arison to Normal curves is less if the variability of data increases . 

roof. The overlapped area of the normal domain is denoted by λN 

 A N 
(1) ∩ A N 

(2) ) and the same for the log-normal domain is denoted

y λLN ( A LN 
(1) ∩ A LN 

(2) ). We prove that the overlapped area of log-

ormal curves is less than the overlapped area of normal curves,

.e. λLN < λN . 

The Fig. 2 (a) shows two normally distributed curves with mean

and standard deviation σ 1 and σ 2 for a random variable x . In a

ormal distribution, the two curves intersect each other at a point

 and Q. We can write 
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Fig. 2. (a) Normally distributed curves; (b) Log-normally distributed curves. 
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According to the definition of error function erf (x) ( Whittaker

 Watson, 1990 ), the value of function is saturated i.e. it goes to 1
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Fig. 3. A graphical plot of overlapped area in normal and log-normal distribution. 
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o  
fter certain degree of variability for any value of x and

he value of erf ( μ+ k ( σ 1 , σ 2 )) will become smaller than

rf (exp ( μ+ k ( σ 1 , σ 2 ))). 

Because of faster asymptotic convergence of exponen-

ial function compared to that of the linear counterpart,

 erf ( μ+ k ( σ 1 , σ 2 )) − erf ( μ− k ( σ 1 , σ 2 ))) > ( erf (exp ( μ+ k ( σ 1 , σ 2 ))) 

erf (exp ( μ− k ( σ 1 , σ 2 )))). 

Therefore, it can be concluded that the proposition holds true

fter a certain degree of variability of data. If there is no variation

n data, then the technique is not applicable. 

Hence, it is proved that λLN < λN . 

We can also prove this by plotting a graph between the over-

apped area and sample values of σ 1 and σ 2 . The bar chart is given

n Fig. 3 . 

It is noticed from Fig. 3 that the overlapped area of log-normal

urves is less than the overlapped area of normal curves, i.e. λLN <

N . It is evident from the discussion that log-normal distribution

elps to reduce the overlapped area (if any) between two random

ariables. 

The effectiveness of log-normal distribution is also proved here

y computing the error ( E ), given in (5) , which is the sum of

quares of the difference between relative frequency histogram and

robability density function (pdf) of a particular distribution with

stimated parameters. 

 = 

∑ 

x 

[ 
h (x ) − ˆ f (x ) p1 p2 

] 2 
, (5) 

here h ( x ) is the relative frequency histogram, ˆ f (x ) is the den-

ity estimation of a random variable and p 1 , p 2 are the estimated

arameters of the distribution. It is noticed in Fig. 4 that log-

ormal distribution generates less error than four other distri-

utions namely Beta, Weibull, Gamma and Gaussian for the face

atasets IRIS, FERET, CMU-PIE and USTC-NVIE except Yale database.

herefore, we use logarithmic transformation along with ICA to ex-

ract maximally independent components from a mixture of data

amples and to increase classification accuracy. 

. Proposed system overview 

Fig. 5 presents the block diagram of our proposed approach

og-ICA, which summarizes both architectures of ICA in the log-

rithm domain. In the pre-processing stage, the database face im-

ges are manually cropped, resized, and finally represented as a

ow or a column data matrix followed by Log-ICA architectures

amely Log-ICA I and Log-ICA II. The proposed approach mainly

onsists of two pre-processing stages. The first pre-processing stage

s log-centering that makes the distribution of data matrix to log-

ormal. Then, PCA is used to project face patterns from a high-

imensional image space to low-dimensional space. The second
re-processing stage is log-whitening that changes the scales of

ariances instead of the unit variance. In the next stage, we invoke

he ICA algorithm for maximizing non-gaussianity as a measure of

tatistical independence. The subspace obtained by ICA algorithm

s used to project individual face images of the database, and pro-

ected images are considered as corresponding feature vectors. The

ptimality of the projection can be substantiated by the classifica-

ion standpoint. In the next sub-section, we illustrate the details of

og-ICA. 

.1. Independent component analysis 

Independent Component Analysis (ICA) is a generalization of

CA technique that assigns data from a high-dimensional space

o a lower-dimensional space and decorrelates the higher-order

tatistics ( Hyvarinen, 1999 ). ICA contains a set of basis vectors with

aximum statistical independence whereas PCA deals with basis

ectors which are orthogonal to each other but do not ensure sta-

istical independence. ICA for face recognition operates within one

f two different architectures, Architecture I and Architecture II. 

ICA Architecture I presents the face images as a linear combina-

ion of a set of statistically independent basis images. To represent

he image for use in recognition, ICA makes use of the reconstruc-

ion coefficients of a face image that are derived from these basis

mages. A given face dataset is organized into a data matrix, where

ach row vector is a different image. In this approach, images are

andom variables, and pixels are trials ( Bartlett et al., 2002 ). 

In ICA Architecture II, the face dataset is represented as a data

atrix where each column vector is a face image. The main differ-

nce between these two architectures is that ICA Architecture I is

alking about independence among face images, and ICA Architec-

ure II tells about independence among face pixels. For simplicity,

e use the terms ICA I and ICA II in place of ICA Architecture I and

CA Architecture II respectively. 

Some popular ICA algorithms include FastICA ( Bartlett et al.,

002; Hyvarinen, 1999 ), Infomax ( Lee et al., 1999 ), Common’s al-

orithm ( Comon, 1994 ), and Kernel ICA ( Bach & Jordan, 2002 ). In

his paper, we use FastICA for implementation of ICA I, ICA II, Log-

CA I, and Log-ICA II. 

The FastICA is based on a fixed-point iteration scheme

 Belhumeur, Hespanha, & Kriegman, 1997 ) for finding the direction

f the weight coefficient vectorWsuch that the projection y = W 

T X
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Fig. 5. Block diagram of Log-ICA. 
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x = x S (7) 
maximizes non-gaussianity for the data matrixX. To computeW,

the non-quadratic function (G) ( Phillips, Martin, Wilson, & Przy-

bocki, 20 0 0 ) used here is given as 

G (y ) = − exp 

(
−y 2 

2 

)
(6)

3.2. The proposed Log-ICA algorithm 

We propose two versions of Log-ICA algorithm namely Log-ICA

I and Log-ICA II based on two architectures of ICA. The whole al-

gorithm is similar for Log-ICA I and log-ICA II except step 1 and

step 2. Therefore, we present the detailed procedure of Log-ICA I

algorithm. 

Algorithm. Log-Independent Component Analysis (Log-ICA I) 

Input: n number of 2 D face images x i ∈ � p × q for i = 1, 2, ..., n ; where p and q 

indicates the row and column numbers respectively. The number of desired 

components is d . 

Output: Feature space S. 

1. Convert each face image ( x i ) as a vector of size m = p × q . 

2. Create a data matrix X = [ x 1 , x 2 ,..., x n ] 
T ∈ � n × m . 

3. (a) To make a zero-mean ( zm ) or center the data matrix X in a trial space 

� m by subtracting the mean column vector ( μ) from each observation � n as: 

X zm = 

n ∑ 

i =1 

m ∑ 

j=1 

x i j − 1 
m 

n ∑ 

i =1 

x i = X − E(X ) = X − μ

(b) Convert the zero-mean variables into the logarithmic domain, so the 

resulting log-centered ( X lc ) is as follows: 

X lc (i, j) = 

1 
log (1+ max _ v alue ) 

log (1 + abs ( X zm (i, j))) max _ v alue is the maximum 

value of X zm . 

4. In this step, whitened matrix ( R w ) is computed as it is done in basic ICA and 

after that logarithmic transformation is taken to obtained log-whitening matrix 

( R lw ) 

(a) Calculate the orthonormal eigenvectors V = [ α1 , α2 ,..., αd ] ∈ � n × d of the 

covariance matrix 
∑ = 

1 
m 

X lc X 
T 
lc 

corresponding to the largest d positive 

eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd , and a matrix of its eigenvalues 

U −1 / 2 = diag( λ−1 / 2 
1 

, . . . , λ−1 / 2 

d 
) . 

(b) Obtain the whitened data matrix as R w = ( VU − 1/2 ) T X lc , R w ∈ � d × m 

(c) Convert the whitened variable into the logarithmic domain, so the resulting 

log-whitening data matrix ( R lw ) is as follows: 

R lw (i, j) = 

1 
log (1+ max _ v alue ) 

log (1 + abs ( R w (i, j))) 

such that E{ R lw R T lw } ∼= 

D where D is a diagonal matrix. 

5. Generate an unmixing square matrix W ∈ � d × d and an independent basis 

image space S = WR lw through FastICA. 

The algorithmic steps are described below . 

The arrangement of face image (Steps 1–2): The conversion

of each 2 D face image ( x i ) to 1 D block reshapes a p -by- q matrix

to a 1 D vector with length m = p × q . Then, a 2D data matrix X is

created by combining all the converted 1 D vectors as rows of X .
owever, in the case of ICA II, 1 D image vectors are stored in the

olumns of the data matrix. 

Transformation of centered data to the logarithmic domain,

.e., log-centered (Steps 3.a-3.b): The most basic and essential pre-

rocessing is to center X , i.e., subtract its mean vector μ= E ( X ) to

ake X a zero-mean variable. 

This preprocessing is made solely to simplify the ICA algo-

ithms. In this stage, the distribution of data matrix follows the

tandard Gaussian distribution according to Central Limit Theorem

CLT). In a practical scenario, the distribution of the data matrices

s not gaussian somewhat arbitrary. In the case of ICA, the distribu-

ion should be non-gaussian and to ensure that, in this method, the

ogarithmic transformation is applied to the centered data, which

s called log-centering of data. 

Creation of Diagonal Matrix through the transformation

f log-whitening (Steps 4.a–4.c): The second pre-processing ap-

roach of ICA is to whiten the observed variables such that its

omponents are uncorrelated and their variances are equal to

nity, i.e., the covariance matrix would be an identity matrix

 Hyvärinen, Karhunen, & Oja, 2002 ). After whitening step, loga-

ithmic transformation is applied to change the scales of vari-

nces instead of unit variance preserving the property of uncor-

elation among the variables. However, the core motive of this

og-whitening aids in increasing non-overlapping of density curves

or the respective observed variables by differing variance val-

es. The whitened covariance matrix ( Fig. 6 (b)) is exactly follow-

ng the identity matrix by same diagonal values with yellow color

ells, and rest of the cells contain values near to zero with purple

olor. The Fig. 6 (c) is representing a covariance matrix of the log-

hitening with the values of the diagonal cells of several colors

hich is an indication of a diagonal matrix. The values of the rest

f the cells are almost zero except few of them. 

Generation of independent subspace (Step 5): Subspace anal-

sis techniques are widely used in face recognition ( Bartlett et al.,

0 02; Liu, 20 04; Zhang et al., 20 07 ). Step 5 presents a subspace

epresentation of face images which is learned through the FastICA

lgorithm for maximizing non-gaussianity as a measure of statisti-

al independence. 

.3. Projection of face images 

Any face image ( x ) given to the system for recognition goes

hrough log-centering ( x lc ) and then projected into the indepen-

ent subspace S to obtain the feature vector ( x f ), in (7) . 

f T 

lc 
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Fig. 6. Log-Whitening Transformation (a) original log-centered covariance matrix (b) whitened covariance matrix (c) log-whitened covariance matrix. 

Fig. 7. Three class separation in ICA and Log-ICA. 
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.4. Projected feature separation 

To illustrate the effectiveness of Log-ICA in class separation, we

onsider a small subset of the IRIS face dataset to have a simple

isualization of separation. We randomly choose three images for

ach of the three expressions for three arbitrary subjects, a total of

7 face images. An independent subspace is created for these 27

ace images, and each of these images is projected into the sub-

pace. The subspace creation and projection of the individual im-

ge is shown in Fig. 7 for ICA I, Log-ICA I, ICA II, and Log-ICA II. It

s observed that Log-ICA II is more efficient than the ICA I, ICA II,

nd Log-ICA I to make the three categories separable in projection

pace. 
. Experimental results and discussions 

The present method is evaluated on four distinct tasks: (a)

ecognition of visual and thermal face images, (b) Recognition of

acial expressions from visual and thermal face images, (c) Face

ecognition from fused images of thermal and visual face images

nd (d) Facial expression recognition from fused images of ther-

al and visual face images. Visual face recognition is evaluated on

MU Pose, Illumination, and Expression (CMU-PIE) database, Facial

ecognition Technology (FERET) and YALE face datasets. The IRIS

Imaging, Robotics, and Intelligent Systems) Infrared (IR)/Visible

ace dataset and USTC-NVIE (Natural Visible and Infrared facial Ex-

ression) face datasets are used for visual and thermal face recog-



102 M.K. Bhowmik et al. / Expert Systems With Applications 116 (2019) 96–107 

Fig. 8. Sample visual face images of (a) FERET (b) YALE (C) CMU-PIE database. 
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nition, facial expression recognition and fused face recognition

purposes. Visual facial expression recognition experiment is also

conducted on Japanese Female Facial Expression (JAFFE) database,

Cohn–Kanade AU-Coded Expression Database (CK), and Compound

Facial Expressions of Emotion (CFEE) databases. 

CMU-PIE dataset ( Sim, Baker, & Bsat, 2003 ) contains 41,368 im-

ages of 68 people. The face image of each person is captured under

13 different poses, 43 different illumination conditions, and with

four different expressions. 

FERET face database ( Phillips, Wechsler, Huang, & Rauss, 1998 )

contains 1564 sets of images for a total of 14,126 images that in-

cludes 1199 individuals and 365 duplicate sets of images. A du-

plicate set is the second set of images of a person already in the

database and was usually taken on a different day. 

YALE database ( Georghiades, Belhumeur, & Kriegman, 2001 )

comprises 165 GIF images of 15 subjects. There are 11 face images

per subject with different expressions or configurations. The sam-

ple visual face images of three different databases are shown in

Fig. 8 . 

IRIS Visual/Thermal face database ( DOE University Research

Program in Robotics, 2005 ) contains face images of 30 individu-

als. Total 4228 pairs of IR and visual images are there, and total

176–250 images/person are captured with 11 images per rotation

(poses for each expression and each illumination). The subjects are

recorded in three different expressions Ex1 (Surprised), Ex2 (laugh-

ing), Ex3 (Anger) and mainly five different illuminations with vary-

ing poses. In this paper, we consider the expression dataset of total

660 face images with 20 classes and 33 images per class and the

illumination dataset of 17 classes with total images of 748 with 44

images per class. 

The USTC-NVIE Visual/ Thermal face dataset ( Wang et al., 2010 )

contains only three expressions (surprise, happiness, and anger).

Each expression has nine images including three frontal, three ori-

ented toward the left and three right oriented poses. We con-

sider face images without glass only from both visual and infrared

datasets. A total number of classes is 30. There are total 270 face

images of 30 individuals. 

The JAFFE database ( Lyons, Akamatsu, Kamachi, & Gyoba, 1998 )

images are taken at Kyushu University, Japan. Tungsten lights are

positioned to create evenly illuminated face images. Ten persons
ose themselves for three or four examples of each of the six basic

acial expressions, namely, happiness, sadness, surprise, anger, dis-

ust, and fear, along with a neutral face for a total of 219 images

f facial expressions. 

The CFEE database ( Du, Tao, & Martinez, 2014 ) contains expres-

ive face images of 230 human subjects. Total 21 different expres-

ions were captured. Other than basic, compound expressions were

lso included in this database. 

The CK Database ( Kanade, Cohn, & Tian, 20 0 0 ) includes 486 se-

uences from 97 posers. Each sequence starts with a neutral ex-

ression and continues to a peak expression. The peak expression

f each sequence is fully FACS coded and given an emotion label.

ubjects perform a series of 23 facial displays that included a sin-

le action unit and combinations of action units. 

The proposed method is compared to the two architectures of

CA with the combination of five different classifiers. K-Nearest

eighbor (KNN), Support Vector Machine (SVM), Linear Discrim-

nant Analysis (LDA), Decision tree, and Random forest. The face

mages are manually cropped and resized to 50 × 50 pixels. For all

hree kinds of experiments, 10-fold cross-validation is used. The

alue of K is 7 in the KNN classifier, and SVM classification is con-

ucted with the help of a polynomial kernel with degree 2. 

.1. Face recognition experiment 

The visual face recognition experiment is conducted on all five

ace datasets. The thermal IR face recognition is performed only

n two datasets: IRIS and USTC_NVIE face datasets. We conduct

he face recognition experiments on five datasets separately. The

ecognition rates for different face datasets are listed in Table 1 . 

.1.1. Face recognition on CMU-PIE datasets 

For the task of face recognition, experiments aim to investigate

he performance of our method compared to two architectures of

CA using five different classifiers. Here, we choose 300 expressive

ace images and 10 0 0 illuminated face images of 10 individuals

rom CMU-PIE dataset. The face images contain different poses. We

erform experiments on both expression and illumination datasets

eparately. 

We list the recognition rates of ICA I, ICA II, Log-ICA I and Log-

CA II with five different classifiers in Table 1 . The performance

easure shows that Log-ICA II with SVM generates a better re-

ult than rest other methods in case of expression face dataset. The

erformance of Log-ICA is worst when it combines with a decision

ree. 

The performance of SVM is superior to LDA, KNN, and Random

orest with the combination of Log-ICA. Though the recognition

ate is too low in illumination dataset, it is noticed that Log-ICA

 and Log-ICA II perform better than ICA-I and ICA II. Here, LDA

chieves a better result than others. Like the expression dataset,

ere also decision tree is the worst performer. The reason behind

he low recognition rate may be the strong illumination variation

n face images, which is not compensated by the Log-ICA algo-

ithm. However, Log-ICA obtains a better result than both archi-

ectures of ICA in illumination dataset. 

.1.2. Face recognition on FERET dataset 

From the subset of gallery 1196 images, we select entire 539

ace images of 34 subjects in our experiment. 

The results show that the recognition rate is very low for all

lassifiers. Besides, Log-ICA II with LDA achieves 59.3% accuracy

hich is very close to the accuracy of ICA II with LDA (59.23%).

imilarly, Log-ICA-I and ICA-I generate almost similar result in

ombination with LDA. The classification result of SVM is slightly

etter than the rest three classifiers (KNN, decision tree, and ran-
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Table 1 

Face recognition rates for different face datasets. 

Method Database Accuracy (%) 

Arch-I Arch-II 

Non-Logarithm Logarithm Non-Logarithm Logarithm 

V T F V T F V T F V T F 

ICA + SVM CMU-PIE (Exp) 90.66 90.33 95.33 95.89 

CMU-PIE (Illu) 45.6 49.8 53.2 49.8 

FERET 44.6 49.6 48.84 48.96 

YALE 72 76 74.66 74.89 

IRIS (Exp) 87.66 79.54 88.76 88.18 84.99 90.75 88.17 85.51 88.93 90.51 85.82 90.99 

IRIS (Illu) 96.22 95.71 97.24 96.40 96.41 97.48 96.78 96.81 98.49 96.86 96.94 98.78 

USTC –NVIE 94.44 90.74 95.54 95.92 95.92 96.99 97.4 97.4 97.77 97.4 97.4 98.4 

ICA + LDA CMU-PIE (Exp) 87.33 87.33 86.66 87.33 

CMU-PIE (Illu) 53 54 53 54 

FERET 57.69 57.96 59.23 59.3 

YALE 81.33 81.33 89.33 89.33 

IRIS (Exp) 88.93 80.75 90.14 90.6 80.93 91.45 89.08 79.99 91.05 90.42 79.99 91.60 

IRIS (Illu) 95.90 94.08 95.95 95.93 95.13 96.01 95.87 94.86 95.98 96.10 94.58 96.45 

USTC –NVIE 98.51 97.4 98.51 98.73 99.62 98.81 98.51 98.14 98.88 98.51 98.14 99.62 

ICA + KNN CMU-PIE (Exp) 59.33 64.66 72 72 

CMU-PIE (Illu) 28 34.8 36.8 36.8 

FERET 35 36.08 35.38 35.53 

YALE 52 70.66 77.33 78.46 

IRIS (Exp) 79.69 74.54 80.29 80.2 75.14 82.72 83.33 81.51 84.99 83.93 82.27 86.05 

IRIS (Illu) 90.37 90.53 91.07 90.72 90.98 91.25 87.80 91.36 93.55 88.22 92.34 94.45 

USTC –NVIE 90.73 87.03 94.07 88.99 91.81 96.25 89.99 96.29 97.03 91.14 96.59 97.51 

ICA + Decision Tree CMU-PIE (Exp) 36.66 44 45.33 47 

CMU-PIE (Illu) 17.4 25.8 24.2 26.9 

FERET 22.3 22.07 22.3 23.53 

YALE 38.66 46.66 48 57.33 

IRIS (Exp) 50.3 40.45 50.3 50.3 40.96 50.75 61.36 44.23 56.81 80.73 86.96 91.07 

IRIS (Illu) 61.80 63.96 61.27 60.41 63.58 61.39 56.94 57.42 61.32 56.05 57.47 61.13 

USTC –NVIE 67.51 65.55 67.03 68.51 65.65 69.62 80.73 86.66 89.62 80.73 86.96 91.07 

ICA + Random Forest CMU-PIE (Exp) 63.33 80.66 86 84.66 

CMU-PIE (Illu) 28.6 33.6 39.8 40.6 

FERET 38.07 40 41.15 42 

YALE 53.33 64 72 74.66 

IRIS (Exp) 79.69 74.54 80.29 80.2 75.14 82.72 93.32 94.81 95.92 83.93 82.27 86.05 

IRIS (Illu) 83.95 89.19 87.67 86.1 90.04 90.65 89.43 94.59 93.95 89.93 94.68 94.72 

USTC –NVIE 86.29 91.47 93.92 85.55 89.62 93.7 93.32 94.81 95.92 94.25 95.36 95.98 
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Fig. 9. Sample face images of IRIS database (a) Visual, (b) Thermal, (c) Fused Face 

Images. 
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p  
om forest). The accuracy improvement is noticed in Log-ICA II for

ll the classifiers. 

.1.3. Face recognition on YALE dataset 

We consider all 150 face images of 10 subjects where each sub-

ect contains 10 face images excluding glass based face images

rom each subject. The performance shows that the highest accu-

acy 89.33% is obtained using both ICA II and Log-ICA II with the

elp of LDA. The performance improves in Log-ICA I and II for the

est other cases. The result of ICA I is highly improved when face

mages are classified using KNN (18.66% improvement) and Ran-

om Forest (10.67% improvement). The classification accuracy of

he decision tree is the poorest for both architectures. 

It is noticed from the evaluation results of three different

atabases that the decision tree does not perform well. The reason

ay be continuous real-valued features of ICA I and ICA II, which

re not well suited for decision trees. 

.1.4. Face recognition on IRIS visual/thermal dataset 

The database contains the expression dataset, which consists of

otal 660 face images of 20 persons and the illumination dataset

hich includes face images of 17 persons with total images of

48. The database comprises both visual and thermal infrared face

mages. Therefore, we conduct face recognition on both modali-

ies and perform classification on fused face images also. Illumi-

ation variation can be compensated using multisensor image fu-

ion technique, which may provide a better recognition rate than a

ingle modality. 
Here, the fusion is carried out based on pixel level fusion

cheme where 50% information is taken from the visual face im-

ge and rest 50% information comes from the thermal face image.

n pixel level fusion, the fusion of pixels can be done by pixel-

ise weighted summation of visual and infrared (IR) images. Fig. 9

resents some sample face images of IRIS face database as well
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Fig. 10. Sample face images of USTC-NVIE database (a) Visual, (b) Thermal, (c) 

Fused Face Images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Sample visual expressive face images of (a) CK (b) CFEE (c) JAFFE database. 
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as fused face images of the corresponding visual and thermal face

images. 

The fused face image recognition rates, tabulated in Table 1 ,

clearly indicate better recognition rate than individual face recog-

nition performance. The Log-ICA I with LDA achieves the highest

accuracy (90.6%) for visual face recognition, and Log-ICA II with

SVM obtains 85.82% maximum accuracy for thermal face recogni-

tion. However, Log-ICA II with LDA generates maximum accuracy

(91.6%) for fused face images where corresponding visual and ther-

mal face recognition rate is 90.42% and 79.99% respectively. We

conduct visual, thermal as well as fused face recognition to en-

sure the effectiveness of Log-ICA over ICA in both architectures.

The thermal face recognition results indicate that Log-ICA can han-

dle face images of other modalities also. 

4.1.5. Face recognition on USTC-NVIE face dataset 

We consider without glass based face images from both visual

and infrared modality. The total number of subjects is 30. There

are total 270 face images of 30 individuals. The visual, thermal and

corresponding fused face images are shown in Fig. 10 . 

Observations reveal that the highest accuracy is obtained

through Log-ICA II and LDA in all three cases. The classification ac-

curacy of ICA II and LDA is almost similar to Log-ICA II and LDA.

The recognition rate of fused face images is better than individ-

ual modalities. One interesting observation is noticed here that the

recognition rate for thermal face images is higher than the recog-

nition rate for visual face images in most of the cases. 

4.2. Facial expression recognition experiment 

The expression recognition experiments are conducted on five

different facial expression datasets namely IRIS visual/thermal face

database, USTC-NVIE face dataset, Cohn-Kanade (CK), Compound

Facial Expressions of Emotion (CFEE) and Japanese Female Facial

Expression (JAFFE) database. First two datasets are already intro-

duced earlier, and five expressive face images from each of the

three newly included face datasets are shown in Fig. 11 . In our ex-

periment, we consider all six basic expressions namely anger, dis-

gust, fear, happy, surprise and sad. The facial expression recogni-

tion accuracies for all five databases are listed in Table 2 . 
.2.1. Facial expression recognition on CK dataset 

We randomly select facial expressions of different persons. Ex-

eriment results indicate that Log-ICA I is not effective for rec-

gnizing expressions in comparison to Log-ICA II. Though the ex-

ression recognition rate is low enough, accuracy improves notice-

bly in the case of Log-ICA II extracted features. The performance

f Log-ICA II is lower than ICA II when combined with LDA. The

erformance improvement is noticed in Log-ICA II in combination

ith the classifiers SVM, KNN, Decision Tree, and Random Forest.

he maximum accuracy (49.81%) is attained through Log-ICA II and

VM in this database. 

.2.2. Facial expression recognition on JAFFE dataset 

We consider frontal expressive face images of ten subjects for

ur experiment. From the Table 2 , it is evident that like the pre-

ious one, here also Log-ICA I does not make any improvement

ver ICA I. The accuracy of Log-ICA II is almost similar to ICA II

n combination with SVM and LDA. ICA II with SVM achieves only

.84% higher accuracy than Log-ICA II, and this recognition rate is

he highest rate for this dataset. Huge performance improvement

more than 23%) is observed in the combination of Log-ICA II and

andom Forest in comparison to ICA II. Decision tree also performs

etter for Log-ICA II than ICA II. 

.2.3. Facial expression recognition on CFEE dataset 

We choose six basic expressions of 50 subjects from the

atabase. The classifier SVM achieves the highest accuracy for ICA

I extracted features. The accuracy of Log-ICA II improves 7.78% and

.45% for LDA and KNN respectively. The performance of Log-ICA I

lightly improves when it combines with LDA and Decision Tree. 

.2.4. Facial expression recognition on IRIS dataset 

In the IRIS dataset, each expression contains 11 face images.

e perform expression recognition experiment on visual, thermal

nd fused face images. It is observed from the experiment that

used facial expression recognition rate is lesser than the individ-

al modality expression recognition rate. The overall recognition

ate is also meager. 

The performance of Log-ICA II is slightly better in the case of

used facial expression recognition than ICA II for all the classifiers

xcept SVM. In combination with SVM and LDA, Log-ICA I shows

ccuracy improvement than ICA I. The reason behind the too low

ecognition rates may be the inclusion of pose variations with each

xpression for each subject in experimental dataset. Pixel level fu-

ion may not be effective enough for expression recognition. 

.2.5. Facial expression recognition on USTC-NVIE dataset 

We select 360 face images for 20 subjects in our experiment.

ach expression has three face images. In this database also, Log-
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Table 2 

Facial expression recognition rates for different face datasets. 

Method Database Accuracy (%) 

Arch-I Arch-II 

Non-Logarithm Logarithm Non-Logarithm Logarithm 

V T F V T F V T F V T F 

ICA + SVM CK 31.90 31.90 43.39 49.81 

CFEE 52.38 51.95 64.55 63.44 

JAFFE 64.16 64.16 78.5 77.66 

IRIS 24.6 21.9 17.63 22.6 21.7 17.8 16.38 20.27 16.94 16.38 18.61 16.38 

USTC-NVIE 20.83 27.5 26.25 20.41 22.91 24.16 48.38 52.41 60.91 41.66 54.83 51.66 

ICA + LDA CK 22.85 22.85 45.28 39.62 

CFEE 41.42 42.38 53.33 61.11 

JAFFE 45 44.16 76.66 75 

IRIS 23.33 25 18 28.66 23 21.33 17 22 20 22 26 21 

USTC-NVIE 20.41 21.66 24.16 17.91 21.25 19.58 40.83 41.66 49.16 31.66 40 40.83 

ICA + KNN CK 22.85 22.85 33.96 43.39 

CFEE 41.42 41.42 46.66 51.11 

JAFFE 42.5 41.66 56.66 46.66 

IRIS 20.66 23 21.66 19.66 16.66 17 19.33 17.33 14 20.33 17.66 16.66 

USTC-NVIE 22.5 15.41 22.5 19.58 15 22.08 46.66 35 45 45 35 37.5 

ICA + Decision Tree CK 13.14 11.52 21.13 31.50 

CFEE 21.09 21.38 31.77 30.11 

JAFFE 23 22.33 24.66 39.16 

IRIS 27.83 28.5 27.63 23 21.66 21.23 21.93 20.4 17.23 22.7 23.46 20.46 

USTC-NVIE 13.58 15.87 16.25 13.29 15.70 13.54 24.33 30 24.91 25.83 32.08 27 

ICA + Random Forest CK 23.32 22.66 29.62 43.01 

CFEE 31.90 31.57 44.38 44.11 

JAFFE 34 33.25 40.5 63.16 

IRIS 20.4 24.06 19.96 12.93 15.6 12.63 13.2 13.46 12.06 14 14.93 12.46 

USTC-NVIE 20.41 21.66 24.16 17.91 21.25 19.58 40.83 41.66 49.16 31.66 40 40.83 
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Table 3 

Facial recognition rates for different face datasets in noise. 

Noise Database Accuracy 

ICA II Log-ICA II 

Gaussian (Additive) USTC-NVIE 94.44 96.66 

FERET 45 45.38 

YALE 74.66 78.66 

CMU-PIE (Exp) 87.33 90 

CMU-PIE (Illum) 43.2 46 

IRIS (Exp) 85.30 90.90 

IRIS (Illum) 95.58 94.35 

Salt&Paper USTC-NVIE 94.44 95.55 

FERET 44.23 48.84 

YALE 73.33 77.33 

CMU-PIE (Exp) 87.33 92 

CMU-PIE (Illum) 46.2 52 

IRIS (Exp) 86.51 89.09 

IRIS (Illum) 95.96 95.58 

Speckle (Multiplicative) USTC-NVIE 94 96.66 

FERET 44.61 45.76 

YALE 66.66 76 

CMU-PIE (Exp) 88.66 92.66 

CMU-PIE (Illum) 41.4 46.8 

IRIS (Exp) 88.18 89.54 

IRIS (Illum) 96.36 95.88 
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I  
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i  
CA does not become efficient enough to improve the performance

f ICA. The maximum accuracy (60.91%) is achieved through ICA

I with SVM in recognizing fused facial expressions. Except ICA II

ombined with SVM and LDA, it is noticed that fused facial ex-

ression recognition rate is higher than visual one but lower than

hermal. The high accuracy in thermal facial expression recogni-

ion indicates that thermal face image contains more informative

eatures than visual one and as a result, fused images add impor-

ant thermal features in it resulting in higher recognition rate than

isual facial expressions. 

From the experimental results, we can say that noticeable per-

ormance improvement occurs using Log-ICA II in case of expres-

ion recognition. Therefore, we consider facial expression as a mul-

iplicative noise of face image, which is converted into additive

oise using Logarithmic transform. We describe the association be-

ween facial expression and multiplicative noise in Appendix. 

.3. Noisy visual face recognition experiment 

The robustness of our proposed approach is ensured with the

ecognition of noisy face images. Three noise types are induced in

ur visual face image datasets, which are Gaussian noise, impulse

oise, and multiplicative noise. The experiment is conducted for

 noise variance of 0.04 (applicable for Gaussian and multiplicative

oise). In the case of impulse noise, the noise density is 0.04. From

he previous recognition results, it is noticed that Log-ICA II per-

orms better than Log-ICA I. In this experiment, we consider only

og-ICA II for noisy face image recognition. Accuracy improvement

s noticed in Log-ICA II for all face datasets except IRIS (Illum) in

able 3 . Accuracy is improved for all three types of noises. 

.4. Comparative study 

We compare our proposed method Log-ICA with two enhanced

ersions of ICA. As we conduct experiments on five different face

atasets, we only consider one face dataset, i.e., Yale face dataset
or comparison purpose. The comparative study in Table 4 shows

hat Log-ICA II performs better than previous ICA based algorithms

EICA and BICA). 

. Conclusion and future work 

An approach to face recognition using natural Logarithm based

ndependent Component Analysis (Log-ICA) is presented here. We

emonstrate the efficiency of our approach on different face

atasets, which contains images gathered with varying lighting, fa-

ial expression, pose. In this paper, human face images of vary-

ng expressions are also recognized using five different classifiers.
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Table 4 

Comparative study. 

Method Face Recognition Accuracy (Yale Face dataset) 

EICA ( Liu, 2004 ) 68.89% 

BICA ( Zhang et al., 2007 ) 75.56% 

ICA I + KNN 52% 

ICA II + KNN 77.33% 

Log-ICA I + KNN 70.66% 

Log-ICA II + KNN 78.46% 
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We highlight the enhanced result of Log-ICA II in combination with

different classifiers, which is comprehended through the accuracy

rate. The proposed method is robust enough in recognizing noisy

face images. The overall expression recognition rate is low for both

ICA and Log-ICA. However, noticeable improvement is seen in Log-

ICA II in recognizing expressions that ensures that Log-ICA II is

suitable enough for expression recognition. In the future, it would

be interesting to work with complicated face datasets like low res-

olution and occluded face images. 
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Appendix 

Representation of facial expression as multiplicative noise 

Facial expression can be expressed using the parameters of an

Active Appearance Model (AAM). AAM represents displacements

from the origin in the space spanned by the model. If we multiply

the parameters by a scalar greater than unity, the distance from

the mean is increased. Therefore, facial expression can be mapped

and manipulated using the AAM parameters and expressed as (8) .

S = S 0 + 

m ∑ 

i =1 

S i P i α (8)

The shape S is defined as the concatenation of the x and y co-

ordinates of n landmark points of the face image. 

S = ( x 1 , y 1 , x 2 , y 2 ,..., x n ,y n ) 
T and P = ( p 1 , p 2 ,…, p n ) 

T is the shape

parameter vector that represents expression variations. The base

shape S 0 is the mean shape and the vectors S i are the reshaped

Eigenvectors corresponding to the m largest Eigenvalues. 

Now if we apply natural logarithm operator on both sides of

(8) , it becomes 

log (S) = log 

( 

S 0 + 

m ∑ 

i =1 

S i P iα

) 

log (S) = log ( S 0 + B ) 
og (S) = log ( S 0 ) + log (B/ S 0 + 1) 

og (S) = log ( S 0 ) + log ( B 1 + 1) 

og (S) = log ( S 0 ) + log ( B 2 ) (9)

We can say from (8) that the vector B 2 comprises principal

omponents of an expressive face image which may be the im-

ortant features responsible for generating facial expressions. This

eans that when these important features are appended with the

eutral face image, the face becomes expressive. 

Multiplicative noise is represented by multiplication of original

mage u and noise n. The recorded image g can be written by 

 = u × n (10)

Here, u, g and n are n 2 × 1 vector corresponding to n × n image.

f we apply natural logarithm operator on both sides of (10) , we

et 

og (g) = log (u ) + log (n ) (11)

By comparing (9) and (11) , we can say that expressive facial

eatures can be taken as a multiplicative noise for face images.

herefore, when faces are expressive, recognition of those face im-

ges becomes difficult. The face images with expression, which are

lso considered as multiplicative noise over neutral face images,

ecome easier to handle as logarithmic transformation converts a

ultiplicative noise into an additive noise. 
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