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A B S T R A C T

The high incidence and mortality rate of breast cancer in India and the limitations of gold standard method X-ray
mammography to be used as a screening and diagnostic modality in young women tempted us to evaluate the
efficiency of highly sensitive and non-radiating Infrared Breast Thermography (IBT) in early breast abnormality
detection. This study investigates the efficiency of IBT by doing Temperature based analysis (TBA), Intensity
based analysis (IBA), and Tumor Location Matching (TLM). In TBA and IBA, several temperature and intensity
features were extracted from each thermogram to characterize healthy, benign and malignant breast thermo-
grams. In TLM, the locations of suspicious regions in thermograms were matched with the tumor locations in
mammograms/Fine Needle Aspiration Cytology images to prove the efficiency of IBT. Thirteen different sets of
features have been created from the extracted temperature and intensity features and their classification per-
formances have been evaluated by using Support Vector Machine with Radial basis function kernel. Among all
feature sets, the feature set comprising the statistically significant (p < 0.05) features provides the highest
classification accuracy of 83.22% with sensitivity 85.56% and specificity 73.23%. Based on the results of this
study, IBT is found to be potential enough to be used as a proactive technique for early breast abnormality
detection in asymptomatic population and hence, capable of identifying the subjects that need urgent medical
attention.

1. Introduction

Breast cancer is the most commonly diagnosed cancer in female
accounting for about one-third of all female cancers [1]. Studies
showed that compared to 10% survival chance for late detection, early
detection leads to 85% survival chance [2]. Hence, early detection is
the key factor for reducing the incidence and mortality rates of breast
cancer. However, due to the radiation risks of the gold standard method
X-ray mammography (MG), it is not recommended for young women of
age below 40 years, nursing and pregnant women [3–5]. Moreover, it
has been reported that only 0% and 1.9% diagnosis were possible under
the age group of 20 years and 20–34 years respectively [6]. These poor
diagnosis rates and the restrictions of MG to be used in women of young
age group tempted us to evaluate the efficiency of portable, highly
sensitive, noninvasive, non-radiating, passive, fast, painless and in-
expensive [7–9] Infrared Breast Thermography (IBT) in early detection
of breast abnormalities so that it can be used for women of younger age
group. The key idea for which IBT is applicable in breast abnormality
detection is that due to the increased blood flow, angiogenesis and

higher chemical and blood vessel activities, the regional surface tem-
perature around the precancerous or cancerous tumor get increased
[10] and IBT, being a functional imaging modality is capable of de-
tecting this minute temperature changes as an early sign of breast ab-
normality. Thus, one of the popular methods for abnormality detection
from thermograms is to examine the presence of hyperthermia and
hypervascularity patterns related to tumor growth [11]. Due to its
capability of detecting any raise in temperature, IBT can detect the first
sign of developing a cancer tumor 8–10 years before MG can detect it
[12,13].

Based on an IBT based study, Gamagami [14] reported that IBT was
capable of detecting cancers in 15% cases, which were not discernible
by MG. They also concluded that in 86% of non-palpable breast cancer
cases, the hypervascularity and hyperthermia were visible [14]. In lit-
erature several studies have been made on temperature based analysis
of breast thermograms. In [15], Sarigoz et al. by doing a temperature
based analysis concluded that IBT can differentiate the benign lesions
from malignant lesions with sensitivity up to 95.24% and specificity up
to 72.73%. Louis [16] confirmed that the abnormal patterns in the
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infrared images are the highest risk indicators of breast cancer devel-
opment in future. Based on a numerical study, Ng and Fork [17] con-
cluded that the average mean temperature of breast for healthy patients
is 32.66 °C and for benign patients is 32.81 °C and for carcinoma pa-
tients is 33.43 °C. In brief Ng and Fork’s investigations showed that
carcinoma patients generally have higher breast temperature compared
to those of healthy patients and even benign patients. Although these
studies evaluated the potentiality of IBT in early breast abnormality
detection through temperature based analysis, the potentiality of IBT in
locating the suspicious regions is still not investigating in any of the
existing research works. So, in this study our objective is to first vali-
date the findings of IBT with the clinical findings, mammography and
Fine Needle Aspiration Cytology (FNAC) reports and then, evaluate the
efficiency and potentiality of IBT in early breast abnormality predic-
tions. Doing so, one can use IBT as a routine checkup tool in asymp-
tomatic population and thus, identify the patients that need urgent
medical attention. The key contributions of this study are as follows-

(a) The potentiality of Temperature Based Analysis (TBA) for dis-
criminating the healthy thermograms from the benign and malig-
nant ones has been investigated.

(b) The discriminability of Intensity Based Analysis (IBA) of breast
thermograms in differentiating healthy, benign and malignant
thermograms has been evaluated.

(c) The performance of each combination of TBA and IBA features has
been evaluated to obtain the most optimal feature set that gives the
highest classification accuracy.

(d) The locations of suspicious regions in breast thermograms are
matched with the tumor locations in mammograms.

The rest of the paper is organized as follows. The designing of a
standard breast thermogram acquisition protocol along with the es-
tablishment of a breast thermogram acquisition setup has been de-
scribed in Section 2. The validation of the collected breast thermograms
has also been done in Section 2. Section 3 describes the analysis of
breast thermograms. Section 4 demonstrates the experimental results.
Finally, Section 5 and 6 discuss and conclude the paper respectively.

2. Materials

2.1. Acquisition of Infrared Breast Thermograms

In order to evaluate the efficiency of IBT in early breast abnormality
detection, the development of a real-time breast thermogram database
is very crucial. However, the accuracy of IBT relies on several factors
and neglecting these factors may hamper and degrade the efficiency
and sensitivity of IBT. In [18], Ring et al. had stated that IBT can
produce a consistent result if certain standards are followed during
thermography. Hence, the acquisition of breast thermograms should be
performed under some strict protocols.

2.1.1. Designing of a standard acquisition protocol suite
Considering the necessity of designing a breast thermogram acqui-

sition protocol, an IBT setup along with a standard acquisition protocol
suite has been designed. Our proposed standard IBT acquisition pro-
cedure comprises of several necessary components including patient
preparation, patient acclimation, environment of the examination
room, the thermal imager system, patient positioning and capturing
views. Each of these components has its influence on the efficiency of
IBT. Hence, the standardization of IBT should maintain all these factors.
The breast thermogram acquisition setup has been established at
Regional Cancer Centre (RCC), Agartala Govt. Medical College, Tripura,
India. A brief overview of each factor of acquisition protocol is provided
in Table 1. The detailed description of each of these factors is provided
in our previous work [19,20].

2.1.2. Statistics of the collected breast thermograms
This study is conducted on a breast thermogram dataset of 60 fe-

male subjects including 25 healthy, 23 benign and 12 malignant cases
and this study is approved by a human subjects committee. Data are
then analyzed for clinico-demographic information such as age, to-
bacco, or alcohol consumption, consumption of oral contraceptives,
number of children, time of menarche, family history of any type of
cancer etc. Table 2 demonstrates the patient characteristics of collected
thermograms of each group.

Healthy Group: As illustrated in Table 2, the majority of healthy
females (68%) included in this study are in the age group of
40–60 years. The mean age of the females is 48 ± 12 years. The to-
bacco consumption is found in almost 44% females. Around 60% of
females are having their menarche at the age of 12 years or less, while
remaining 40% have their menarche at the age of 13 years or more. Out
of all healthy females, 48% are having their marriage before 18 years of
age. Around 48% females are having 1 or 2 children and 44% are
having 3 or more children. The intake of oral contraceptive is found in
only 20% females and 16% of females have the family history of having
cancer.

Benign Group: As illustrated in Table 2, around 87% benign fe-
males are of age 60 years or less. The mean age of the group is
42 ± 13 years. About 35% of females consume tobacco and 96% of
females get their menarche at the age of 12 years or more. Majority of
females (61%) are having their marriage at the age of 18 years or more
and 83% of females are found to have either 1 or 2 children. Only 22%
of females are found to intake oral contraceptives and 13% of females
have the family history of having cancer.

Malignant Group: Like the benign group, majority of females
(92%) in malignant group also are of age 60 years or less. The mean age
of the group is 49 ± 9 years. Only 25% females are found to have to-
bacco consumption and 92% of females get their menarche at the age of
12 years or more. Out of all malignant females, 58% are having their
marriage at the age of 18 years or more. 50% of malignant females have
1 or 2 children and the remaining 50% have 3 or more children. The
intake of oral contraceptive is found in 50% malignant females and 25%
of females have the family history of having cancer.

2.1.3. Validation and Categorization of Infrared Breast Thermograms
To evaluate the efficiency of IBT in early breast abnormality de-

tection, the validation of the findings of IBT with the findings of the
gold standard methods is very crucial. Therefore, along with the ther-
mograms we have also collected the clinical examination, MG and the
FNAC reports (if available) of each subject undergoing IBT. A com-
parison of the outcome of the MG and FNAC reports with the findings of
IBT has been illustrated in Table 3. Table 3 also depicts the findings of
the clinical examination of each patient. Although, a collection of more
than 100 breast thermograms has been made, but to prove the effi-
ciency of IBT, we consider the thermograms of only those subjects
which are found to be either healthy or unhealthy based on the results
of either mammography or FNAC. As illustrated in Table 3, it has been
seen that for each abnormal cases either benign or malignant, IBT is
capable of identifying the abnormality by showing either an asym-
metric thermal pattern or a higher temperature region. However, in
three cases with Patient Id 29, 30 and 31 of the abnormal group in
Table 3, IBT shows the presence of asymmetry and hotspots in ther-
mograms even when their MG reports are normal. But, the presence of
ultrasound-guided FNAC reports of these cases supports the findings of
IBT and it confirms that IBT is also capable of showing the abnormal-
ities which are not detectable (false negative) through the gold standard
method MG. Similarly, for MG or FNAC result based healthy cases, IBT
is also capable of showing the presence of symmetry between the two
breasts. Thus, by validating the outcomes of IBT with the reports of
MG/FNAC, we can conclude that it is possible to use IBT either as a safe
routine check-up or adjunctive tool in both symptomatic and asymp-
tomatic population to identify the cases that require urgent medical
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attention and further evaluation. Based on the MG and FNAC reports,
the experimental breast thermograms are categorized into three groups
namely: Healthy, Benign and Malignant.

3. Method: Analysis of breast thermograms

This section evaluates the efficiency of IBT quantitatively. For
quantitative representation of the findings of IBT, we adopt the method
of temperature based analysis (TBA) and intensity based analysis (IBA)
of the temperature and intensity matrix of thermograms respectively.
The temperature matrix of each thermogram is extracted by using the
FLIR Software tool and stored in the form of ‘.CSV’ (Comma Separated
Values) files. Meanwhile, it is worth mentioning that while doing the
TBA and IBA of thermograms, it is necessary to discard the non-breast
regions from breast thermograms before computing the temperature or
intensity features. Hence prior to the TBA and IBA, the breast ther-
mograms are manually cropped to discard the irrelevant regions like
neck portion, area underneath the breast etc. and then the breast region

was extracted out by using a semi-automatic segmentation method
[21,22], where a breast mask of each cropped breast thermogram is
created by manually selecting the lower breast boundary points. Now,
for performing the TBA and IBA, it is necessary to extract the bilateral
temperature and intensity values from a breast thermogram. Fig. 1
depicts the procedure of extracting the bilateral temperature values
from a breast thermogram which involves the following steps.

Step1: Obtain the cropped temperature matrix of the cropped breast
thermogram.
Step2: Convolve the cropped temperature matrix with the corre-
sponding breast mask.
Step3: Extract the temperature values inherent to breast region only.
Step4: Separate the temperature values of left and right breast.

In IBA, the same procedure is used to extract the bilateral intensity
values from each breast thermogram. Fig. 2 depicts the segmented
breast regions of some sample breast thermograms. Along with the TBA
and IBA, a tumor location matching (TLM) analysis has also been per-
formed, where the locations of suspicious regions in thermograms are
matched with the tumor locations in mammograms/FNAC images. The
details of each of these TBA, IBA and TLM are provided below.

3.1. Temperature Based Analysis (TBA) of thermograms

Since 400 BCE, the temperature has been used for clinical diagnosis
[13,23]. Being homeothermic, the human is capable of maintaining a
constant temperature in the body and to have the normal performance
of the human body, it is essential to regulate the inner core tempera-
ture. A small change of core temperature is a clear indication of prob-
able illness [24]. Hardy [25,26] established the diagnostic importance
of temperature measurement by infrared technique, which introduced
the concept of using infrared thermography in medical science. In 1963,
Barnes demonstrated that thermograms can provide information of
physiological anomalies and hence, useful for diagnosis of physical
illness [27].

TBA investigates the capability of thermal patterns in discriminating

Table 1
Different Factors of Breast Thermogram Acquisition Protocol.

Factors Description

Patient preparation The patients are instructed to avoid prolonged sun exposure, the application of lotion or ointment on breasts, physical activity,
pain medication, smoking or consumption of alcohol on the day of breast thermography. Moreover, the patient is also instructed
to come in her 5th−12th day and 21st day of the menstrual cycle.

Patient intake form Upon arrival on the day of examination, the patients are instructed to fill an Intake Form by giving her all personal information
including name, age, sex, height, weight, etc. and disease related information like symptoms (if any), duration, etc.. The patient
also provides her family history of breast cancer or any other cancer, previous medical tests, diagnoses, surgeries, physical therap-
ies (if any), etc. The patients are also asked to give their written consent on the intake form for using their breast thermograms for
the research purpose.

Patient acclimation After taking the consent, the patient is brought to a private place inside the examination room and she is instructed to disrobe
from her waist up and to remove jewelry like neckpieces, chain, etc. (if any). Then the patient is asked to lie down on a bed cum
table for 15min by keeping his/her hands over head.

Examination room, environmental condition The size of the room is adequate to maintain a consistent temperature. The examination room is free from ventilators and win-
dows. An air conditioner is placed in the room to maintain the room temperature in the range of 20–24 °C. For accurately monit-
oring the humidity of the examination room, a Thermo-Hygrometer has also been utilized. In the examination room, instead of
incandescent light, fluorescent lighting is used.

Breast Thermogram Acquisition Setup The breast thermogram acquisition setup comprises of 3 components:
(a) An Infrared Camera: FLIR T650sc thermal camera with thermal sensitivity of < 20 mK @ 30 °C, spectral range of 7.5–14.0

μm and image resolution of 640×480 pixels has been used for acquisition of breast thermograms. For mounting the thermal
camera, a vertical height adjustable tripod stand with a heavy base is used.

(b) A Black Cubicle: To have a homogeneous black background while capturing, a cubicle with black background has been us-
ed. This cubicle with the black background is also used for providing privacy to the patients during acclimation time.

(c) A Bed cum Table: To perform the patient acclimation in lying position and to have different views of breast thermograms,
a bed cum table has been designed.

Patient positioning An alignment of about 90° is maintained in between the camera lens, and breast area of each patient. To improve the precision
of the temperature readings and the interpretation accuracy of the thermograms, a distance of 1 m is kept between the thermal
camera and the patient body.

Breast Thermogram Views The capturing starts with the supine view of the breast, which is followed by the capturing of frontal view, left lateral view, right
lateral view, left oblique view, right oblique view, and close up views of each breast.

Table 2
Patient characteristics.

Patient Parameters Healthy (25) Benign (23) Malignant (12)

Age: < 40 5 11 3
40–60 17 9 8
>60 3 3 1

Tobacco consumption 11 8 3
Menarche Age:
< 12 4 1 1
At 12 11 13 4
>12 10 9 7

Age at Marriage:
< 18 years 12 9 5
>=18 years 13 14 7

Number of Children:
1–2 12 19 6
3–5 11 3 6

Intake of oral contraceptives 5 5 6
Family History of Breast cancer 4 3 3
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Table 3
Medical Information of all Patients with and without Abnormal Findings.

Patient Id. Age (yrs.) Self-Examination/Duration Clinical Observation Mammo
Report

Location based on
Mammo

FNAC/
Biopsy

Thermogram Result

ABNORMAL SUBJECTS
1 36 Pain, Discharge, Lump (Lt)/11months Not Provided FA (Lt) UOQ – Asym
2 55 Lump (Lt)/6–7months Lump (Lt) MT (Lt) LIQ MT (Lt) HS (Lt), Asym
3 62 Pain, Tenderness, Discharge, Lump (Lt)/6 months Lump (Lt) MT (Lt) UOQ – HS (Lt), Asym
4 27 Pain, Lump (Lt)/1month Not Provided FL (Lt) UOQ – Asym
5 56 Pain, lump (Lt), skin is reddish/6 months Lump (Lt) MT (Lt) UA DC (Lt) HS (Lt), Asym
6 46 Pain, Heaviness, Lump (Lt)/1 year Lump (Lt) MT (Lt) PA MT (Lt) HS (Lt), Asym
7 58 Pain, Tenderness, Lump (Lt)/3months, Lump (Lt) MT (Lt) UOQ MT (Lt) Asym
8 41 Pain, Lump (Lt)/2months Nodular Fasciitis (Lt) BT (Lt) LIQ – Asym
9 39 Pain , Tenderness , Lump (Lt)/2month, Lump (Lt) MT (Lt) UOQ DC (Lt) HS (Lt), Asym
10 41 Pain, Tenderness, lump (both)/5 years, Not Provided DE (Both) UIQ – Sym
11 28 Tenderness, Lump (Rt)/2month Swelling (Rt) BT (Rt) UOQ BT (Rt) HS (Rt), Asym
12 60 Pain (Lt)/ 1month/Breast Cancer (Lt) 8 years back Lump (Lt) FL (Lt) UIQ – Asym
13 25 Pain, Tenderness, Lump, discharge (both)/5 years FD (Both) FD (Both) UOQ – HS (Rt), Asym
14 54 Pain, Tenderness, Lump (Rt)/4month Lump (Rt) MT (Rt) UOQ MT (Rt) HS (Rt), Asym
15 35 Pain, Lump (Lt), Inverted nipple (Lt), Heavy milky

discharge (Lt)/2 weeks
Fibroadenosis (Left) MT (Lt) UOQ – HS (Lt), Asym

16 30 Pain (Both), Tenderness, Lump (Rt)/2 years Fibroadenosis (Both) FD (Both) – – HS (Both), Asym
17 38 Lump (Rt)/1month Lump (Rt) MT (Rt) PA DC (Rt) HS (Rt), Asym
18 47 Pain, Tenderness, Lump (Both), milky discharge

(both)/9 years
Lump (Both) BT (Both) – – HS (Both)

19 40 Pain, Tenderness, Lump (Rt), swelling of right
hand, Inverted nipple (Rt) /1 year

Lump (Rt) MT (Rt) UIQ DC (Rt) HS (Rt), Asym

20 30 Pain, Lumps, yellowish discharge (left)/3months Not Provided BT (Lt) – IG (Lt) HS (Lt), Asym
21 21 Pain, Tenderness, Lumps(both)/4months Lump (Both) BT (Rt) – FA (Both) HS (Both)
22 70 Pain, Lump (Rt)/1month Lump (Rt) Cal (Rt) – – HS (Rt), Asym
23 40 Tenderness, Lumps (Rt)/2 years Lump (Rt) BT (Rt) UIQ BT (Rt) HS (Rt), Asym
24 47 Pain, Lump (Lt)/3–4 weeks Lump (Both) FA (Lt) – – HS (Both), Asym
25 65 Pain, Heaviness, lump (Lt)/6 months Lump (Lt) BT (Lt) – – HS (Lt), Asym
26 35 Lump, yellowish discharge (Lt)/6months Lump (Lt) BT (Lt) UIQ FA (Lt) HS (Lt), Asym
27 60 Pinprick pain, Lump (Lt)/3 weeks Lump (Lt) MT (Lt) UIQ MT (Lt) HS (Lt , Asym
28 32 Pain, Lumps (Both)/7 years Lump (Rt) BT (Rt) UIQ – HS (Both), Asym
29 49 Pain, Lump (Lt), skin is reddish/2 week Lump (Lt) DB PA BT (Lt) HS (Lt), Asym
30 47 Pain, Burning, Lump (Lt)/2 months Swelling (Lt) N UIQ DC (Lt) HS (Lt), Asym
31 36 Lump (Rt)/3months Fibrocystic (Rt) N – BT (Rt) Asm
32 61 Skin is Reddish (Rt) Skin Ulcer (Rt) DB – Ulcer (Rt) HS (Lt), Asym
33 37 Pain (Lt) /3 months/FD (Rt) 2 years back Fibroadenosis (Rt) FA (Lt) – – HS (Lt), Asym
34 35 Pin prick pain (Both)/1 year Swelling (Both) BT (Both) – – Asym
35 60 Pain, Heavy PUS Formation(Lt)/2 weeks Abscess, Swelling (Lt) FA (Lt) – – HS (Lt), Asym

NORMAL SUBJECTS
1 43 No symptom (Just Screening) Not Provided N – NA Symmetric
2 46 Pain, Tenderness (B/L)/2 yrs. Not Provided N – NA Symmetric
3 27 Pain (Rt)/1 yrs. Not Provided N – NA Symmetric
4 40 Pain, Tenderness (Rt), Lump (Rt)/5months Lumpiness (Rt) N – NA Mild Asym
5 68 Pain, Lump (Rt)/3months, Not Provided N – NA Symmetric
6 49 Pain, Tenderness, Lump (Lt)/3months Not Provided N – NA Symmetric
7 58 Pain, Tenderness, Lump (Rt)/1month Not Provided N – NA Symmetric
8 60 Pain, Tenderness, Lump (Rt)/1 yr. Lump (Rt) N – NA Symmetric
9 39 Burning Sensation (Rt)/2months Swelling (Rt) N – NA Symmetric
10 38 Pain, Lump (B/L)/3months Not Provided N – NA Symmetric
11 36 Lump (Rt)/1week Not Provided N – NA Symmetric
12 40 Pain, Tenderness, Lump (B/L)/3months Not Provided N – NA Symmetric
13 35 Pain (Rt)/1+ yrs., Lump (Rt)/1 week Not Provided N – NA Symmetric
14 46 Lump (B/L), Milky discharge (B/L)/long time Discharge (B/L) N – NA Symmetric
15 70 Pain, Lump (Lt)/1 yr. Not Provided N – NA Symmetric
16 42 Pain (Rt), White liquid discharge (B/L)/1 week Discharge (B/L) N – NA Symmetric
17 40 Pain, Lump (Rt)/2months Lump (Rt) N – NA Mild Asym
18 47 Pain, Lump, Milky discharge (B/L)/9 yrs. Discharge (B/L) N – NA Symmetric
19 45 Pain, Tenderness (Lt), Discharge (Lt)/1month Discharge (Lt) N – NA Symmetric
20 45 Pain (Rt)/1 week, Tenderness (Rt)/5months Not Provided N – NA Symmetric
21 45 Tenderness, Lump (B/L)/2months Not Provided N – NA Symmetric
22 52 Pain, Tenderness (Rt)/2 weeks, Severe Back pain Not Provided N – NA Symmetric
23 70 Pain, Lump (Lt)/1 yr. Not Provided N – NA Symmetric
24 50 Pain (B/L)/10 yrs. Mastalgia N – NA Symmetric
25 53 Pain, Lump (Lt)/2yrs Lump (Lt) DB – NA Symmetric

Rt – Right, Lt – Left, Asym – Asymmetric, Sym – Symmetric, HS – Hotspot, MT – Malignant Tumor, BT – Benign Tumor, DC - Ductal Carcinoma, FA – Fibroadenoma,
MC - Mucinous Carcinoma, DE - Ductal Ectasia, F – Fibroids, FD – Fibroadenosis, Cal - Vascular Calcification, FL – Focal Lesion, IG – Infected Galactocele, FC –
Fibrocystic Disease, UOQ - Upper Outer Quadrant, LIQ - Lower Inner quadrant, UIQ - Upper Inner quadrant, LOQ - lower outer quadrant, UA – Under Arm, PA –
Periareolar, N – Normal Study, DB – Dense Breast.
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healthy, benign and malignant breast thermograms. To quantitatively
represent the thermal patterns, four different temperature features
namely mean, maximum, mode [28,29] and median temperature have
been extracted from both left and right breasts. Extraction of these
temperature features is followed by the computation of the temperature
difference between both breasts of a thermogram. Based on the prop-
erty of abnormal thermograms of having a significant temperature
difference between two breasts, we have tested the statistical

significance of the temperature analysis in breast abnormality detec-
tion. The statistical significance of the temperature features in dis-
criminating between (a) healthy and benign, (b) healthy and malignant
and (c) benign and malignant have been measured. For the statistical
test, the Wilcoxon non-parametric test with significance level of 5% has
been used. The average of the temperature differences of all breast
thermograms of the benign, malignant and healthy groups along with
their statistical significance values (p-value) are tabulated in Table 4.

Fig. 1. Extraction of bilateral temperature values of a breast thermogram.

Fig. 2. (a) Healthy breast thermogram, (b) Benign breast thermogram, (c) Malignant breast thermogram, (d) Segmented breast regions of corresponding breast
thermograms, (e, g, i) Right breasts and (f, h, j) Left breasts of corresponding breast thermograms.
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Table 4 demonstrates that the healthy breast thermograms bear minute
bilateral temperature difference, while there is a significant tempera-
ture difference between two breasts of benign and malignant breast
thermograms. However, the bilateral temperature difference of a ma-
lignant breast thermogram is much higher than a benign breast ther-
mogram.

By observing the p-value of significance test as demonstrated in
Table 4, it is found that only the mean temperature is statistically sig-
nificant in separating healthy thermograms from the benign ones, while
all four temperature features are statistically significant in differ-
entiating healthy thermograms from the malignant ones. However,
except maximum and median temperature, the mean and mode tem-
peratures are statistically significant in separating the benign thermo-
grams from the malignant ones.

Since, we are dealing with different images of healthy, benign and
malignant cases for temperature analysis, hence instead of directly

comparing the temperature differences of a benign with the tempera-
ture differences of a malignant thermogram, we sort all the bilateral
temperature difference values (obtained from each thermogram of any
group) in ascending order for all four temperature features: mean,
maximum, mode and median and then, plot them in same X-Y plan for
comparison as illustrated in Fig. 3.

As depicted in Fig. 3(a), it has been seen that for almost all the
malignant thermograms, the bilateral mean temperature differences are
much higher than the bilateral mean temperature differences of benign
and healthy thermograms. Similarly, the mean temperature differences
in most of the benign cases are also higher than the mean temperature
differences in healthy cases. Like mean, the bilateral maximum, mode
and the median temperature differences of malignant thermograms (as
shown in Fig. 3(b-d) respectively) are also much higher than the
maximum, mode and median temperature differences in healthy and
benign cases. However, unlike all malignant cases, for some benign and

Table 4
Bilateral temperature difference in each category of breast thermograms.

Temperature features Healthy (H) Benign (B) Malignant (M) p-val
(H Vs. B)

p-val
(H Vs. M)

p-val
(B Vs. M)

Mean 0.309 ± 0.242 0.625 ± 0.612 1.000 ± 0.607 0.0345 < 0.05 0.00002 < 0.05 0.0156 < 0.05
Maximum 0.455 ± 0.446 0.682 ± 0.582 1.197 ± 1.016 0.1118 > 0.05 0.0121 < 0.05 0.1104 > 0.05
Mode 0.708 ± 0.661 1.021 ± 0.917 1.343 ± 1.041 0.1822 > 0.05 0.0111 < 0.05 0.0243 < 0.05
Median 0.379 ± 0.304 0.558 ± 0.576 1.028 ± 0.688 0.2005 > 0.05 0.000639 < 0.05 0.1469 > 0.05

Fig. 3. (a) The bilateral mean temperature difference, (b) The bilateral maximum temperature difference, (c) The bilateral mode temperature difference and (d) The
bilateral median temperature difference of each breast thermograms in healthy, benign and malignant groups.
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healthy cases, the maximum and median temperature difference is al-
most similar, which may sometimes increase the false positive and false
negative rate.

Thus, by separating the malignant cases from the healthy or benign
cases, TBA of thermograms can identify the cases that need urgent
medical attention. Hence, by pinpointing the suspicious cases through
TBA, the IBT can provide more treatment options to the radiologists and
also improves the survivability rate of the patients.

3.2. Intensity Based Analysis (IBA) of thermograms

The different temperature range of the breast surface temperature is
represented with different pseudo colors in a breast thermogram.
Hence, like the temperature analysis, the intensity value based analysis
of the breast thermogram also plays an important role in early breast
abnormality prediction. There are several color palettes with different
pseudo colors to represent the breast thermograms. Here for the ex-
perimental purpose, among various color pallets, we have considered
the “Rainbow HC” color pallet. The IBA has been performed in two
ways: (a) Intensity Histogram Based Analysis and (b) Statistical Feature
Based Analysis.

3.2.1. Intensity histogram based analysis
The “Rainbow HC” color pallet is an RGB image and for the IBA of

thermograms, the intensity distributions of thermograms in each of R, G
and B channel has been investigated. Along with the R, G, B histograms,
the grayscale histogram of each breast thermogram is also analyzed for
finding out the discriminability power of IBA in early breast abnorm-
ality detection. The R, G, B and grayscale histograms of the left and
right breasts of a healthy, benign and malignant breast thermogram
have been plotted in Fig. 4(a-c), (d-f) and (g-i) respectively.

As demonstrated in Fig. 4(a-b), in a healthy breast thermogram, the
intensity distribution of left breast in all three R, G and B channels is
almost similar to the intensity distribution of right breast in corre-
sponding channels. Similarly, the grayscale distribution of left and right
breast of a healthy breast thermogram as shown in Fig. 4(c) also il-
lustrates the similarity of intensity distributions in both breasts.
Moreover from Fig. 4(c), it can be concluded that in healthy breast
thermograms, the dynamic range of left breast is almost similar to the
dynamic range of the right breast. As illustrated in Fig. 4(d-e), con-
siderable variations have been seen in the intensity distributions of the
left and right breast of a benign breast thermogram in all three R, G and
B channels. As shown in Fig. 4(d), in Red channel, the maximum
number of pixels of left breast is found to acquire the intensity value in

Fig. 4. The RGB histograms of (a) Left breast and (b) Right breast of a healthy thermogram; (c) The Gray level histogram of leftand right breast of a healthy
thermogram; The RGB histograms of (d) Left breast and (e) Right breast of a benign breast thermogram; (f) The Gray level histogram of left and right breast of a
benign breast thermogram; The RGB histograms of (g) Left breast and (h) Right breast of a malignant breast thermogram; (i) The Gray level histogram of left and right
breast of a malignant breast thermogram.
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the range of 220–250, while in the right breast, the maximum number
of pixels acquire the intensity values in the range of 130–170. More-
over, Fig. 4(f) illustrates that the graylevel distribution of left breast is
considerably different from the graylevel distribution of the right
breast. A change in the dynamic range of left and right breast has also
been seen in Fig. 4(f), where the dynamic range of the left breast is in
between 30 and 200 and the dynamic range of the right breast is in
between 0 and 250. Thus, from the RGB and graylevel intensity dis-
tribution, it is possible to separate the benign thermograms from the
healthy one. Like benign, in malignant cases also, the intensity dis-
tribution of left breast is different from the intensity distribution of
right breast in all R, G and B channels. As illustrated in Fig. 4(g), in red
channel the highest number of pixels of left breast is found to acquire
the intensity values in the range of 210–255, while in the right breast
the maximum number of pixels acquires the intensity values in the
range of 110–225. Similarly, compared to the green components in the
left breast, the right breast has more green components. Besides, as
demonstrated in Fig. 4(i), the graylevel distribution of left breast is
vastly different from the graylevel distribution of the right breast and
the dominant dynamic range of left breast is found to be 0–200, while
the dynamic range of right breast is 30–250.

Thus, by analyzing the left and right breasts’ intensity distributions
of breast thermograms, it is possible to predict the presence of an ab-
normality in thermograms. Moreover, intensity analysis of breast
thermograms also enables the categorization of breast thermograms
into healthy, benign and malignant group.

3.2.2. Statistical feature based analysis
This section aims to represent the discriminability of intensity his-

tograms in a quantitative way by computing the first order statistical
(FOS) features which are also known as histogram based features. A set
of six FOS features including mean, entropy, skewness, kurtosis, var-
iance and standard deviation (std) has been extracted from the intensity
histograms of each R, G, B channels and from the grayscale image.
Computation of these features for both left and right breasts is followed
by the calculation of the bilateral feature differences. The average of the
bilateral feature differences of all breast thermograms of healthy,

benign and malignant groups in each channel is listed in Table 5. Along
with the average feature value differences, the statistical significance
(p-value) of each feature has also been evaluated by using Wilcoxon
non-parametric test to verify their efficiency in differentiating the ma-
lignant, benign and healthy thermograms. The p-values of each feature
have been listed in Table 5. However, it is worth mentioning that the p-
value of each feature mentioned in Table 5 is valid to only thermograms
in “Rainbow HC”color pellet and the p-values may vary if thermograms
in different color pellet are used. As demonstrated in Table 5, it has
been seen that among all the features of red channel image, only r_mean
is statistically significant (p < 0.05) in differentiating the healthy
thermograms from benign and malignant thermograms, but it is not
significant in differentiating the benign thermograms from the malig-
nant ones.Similarly, among all the green channel image features,
g_mean, g_skewness, g_variance and g_std are found to be statistically
significant (p < 0.05) in differentiating malignant thermograms from
the healthy and benign ones. But, these four features are not statisti-
cally significant to differentiate the healthy thermograms from the be-
nign ones. Likewise among all blue channel features, only b_mean,
b_variance and b_std can significantly differentiate the healthy ther-
mograms from the benign and malignant ones. Moreover along with
these three blue channel features, b_entropy can also separate the
healthy thermograms from malignant ones. However unlike these three
channel features, three grayscale image features mean, variance and std
are found to be statistically significant (p < 0.05) in differentiating
each category of thermograms. Unlike remaining features of the
grayscale image, the entropy is also significant (p < 0.05) in differ-
entiating healthy thermograms from benign and malignant ones.

Moreover to conclude the efficiency of extracted features in breast
abnormality prediction, their sole and combined prediction perfor-
mance should be evaluated by using a machine learning technique.
Hence, feature extraction is followed by evaluating the prediction
performance of these feature sets in classifying breast thermograms into
healthy, benign and malignant groups. However for choosing the most
efficient classifier for performance evaluation of feature sets, we rely on
the findings of our previous works [21,22]. In [21], the performance of
different classifiers: Support Vector Machine (SVM), K-Nearest

Table 5
Bilateral feature difference in each category of breast thermograms.

Statistical Features Healthy (H) Benign (B) Malignant (M) p-val
(H Vs. B)

p-val
(H Vs. M)

p-val
(B Vs. M)

Red Channel Features r_mean 9.313 ± 9.28 16.57 ± 13.459 25.03 ± 19.103 0.0184 < 0.05 0.0026 < 0.05 0.1086 < 0.05
r_entropy 0.114 ± 0.093 0.098 ± 0.059 0.129 ± 0.119 0.5403 > 0.05 0.4932 < 0.05 0.4506 > 0.05
r_skewness 0.247 ± 0.219 0.265 ± 0.175 0.257 ± 0.312 0.2253 > 0.05 0.7902 < 0.05 0.7987 < 0.05
r_kurtosis 0.645 ± 0.583 0.896 ± 0.628 0.932 ± 0.720 0.0892 > 0.05 0.1550 < 0.05 0.5635 > 0.05
r_variance 0.009 ± 0.022 0.006 ± 0.011 0.017 ± 0.037 0.5669 > 0.05 0.0756 > 0.05 0.0548 > 0.05
r_std 0.022 ± 0.010 0.017 ± 0.005 0.039 ± 0.018 0.4955 > 0.05 0.0616 > 0.05 0.0590 > 0.05

Green Channel Features g_mean 13.39 ± 11.397 11.87 ± 7.497 27.52 ± 17.014 0.5492 > 0.05 0.0046 < 0.05 0.0026 < 0.05
g_entropy 0.130 ± 0.158 0.149 ± 0.109 0.179 ± 0.1445 0.0856 > 0.05 0.0918 > 0.05 0.2787 > 0.05
g_skewness 0.301 ± 0.264 0.246 ± 0.207 0.605 ± 0.363 0.7747 > 0.05 0.0041 < 0.05 0.0009 < 0.05
g_kurtosis 0.419 ± 0.428 0.335 ± 0.285 0.529 ± 0.321 0.6530 > 0.05 0.1171 > 0.05 0.0139 < 0.05
g_variance 0.011 ± 0.021 0.009 ± 0.011 0.018 ± 0.0165 0.4953 > 0.05 0.0096 < 0.05 0.0007 < 0.05
g_std 0.022 ± 0.011 0.017 ± 0.006 0.034 ± 0.009 0.4776 > 0.05 0.0187 < 0.05 0.0014 < 0.05

Blue Channel Features b_mean 8.333 ± 5.498 23.11 ± 17.717 26.85 ± 19.044 0.0008 < 0.05 0.0006 < 0.05 0.2553 > 0.05
b_entropy 0.440 ± 0.382 0.716 ± 0.579 0.814 ± 0.439 0.0660 > 0.05 0.0106 < 0.05 0.2669 > 0.05
b_skewness 0.828 ± 0.488 0.803 ± 0.774 0.798 ± 0.580 0.8476 > 0.05 0.6782 > 0.05 0.3157 > 0.05
b_kurtosis 6.166 ± 5.343 4.008 ± 4.416 3.018 ± 2.249 0.9681 > 0.05 0.9539 > 0.05 0.4929 > 0.05
b_variance 0.009 ± 0.019 0.026 ± 0.050 0.037 ± 0.045 0.0020 < 0.05 0.0051 < 0.05 0.0838 > 0.05
b_std 0.029 ± 0.007 0.063 ± 0.021 0.079 ± 0.022 0.0184 < 0.05 0.0007 < 0.05 0.1227 > 0.05

Grayscale Image Features mean 6.968 ± 6.786 11.66 ± 8.726 16.76 ± 16.76 0.0184 < 0.05 0.0006 < 0.05 0.0435 < 0.05
entropy 0.088 ± 0.093 0.198 ± 0.127 0.241 ± 0.241 0.0001 < 0.05 0.0001 < 0.05 0.1817 > 0.05
skewness 0.222 ± 0.211 0.24 ± 0.170 0.353 ± 0.260 0.2680 > 0.05 0.0574 > 0.05 0.1020 > 0.05
kurtosis 0.252 ± 0.264 0.378 ± 0.318 0.444 ± 0.346 0.0554 > 0.05 0.0574 > 0.05 0.2669 > 0.05
variance 0.004 ± 0.009 0.008 ± 0.016 0.015 ± 0.017 0.0052 < 0.05 0.0000 < 0.05 0.0048 < 0.05
std 0.010 ± 0.004 0.021 ± 0.007 0.038 ± 0.007 0.0089 < 0.05 0.0000 < 0.05 0.0043 < 0.05
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Neighborhood (KNN), Decision Tree (DT) and Artificial Neural Network
(ANN) have been compared and among all, the SVM provides the
highest classification accuracy. Similarly in [22], among seven different
classifiers: SVM, ANN, KNN, DT, Random Forest, Linear Discriminant
Analysis and AdaBoost, the SVM gives the best classification accuracy.
Hence instead of using different classifiers, in this work the perfor-
mance of the feature sets are evaluated by using only the SVM classifier.
Thus by evaluating the efficiency of extracted feature set, it is possible
to identify the most potential feature set.

3.3. Tumor Location Matching (TLM)

Besides quantitatively evaluating the potentiality of IBT to be used
as a routine check-up tool in the asymptomatic population, it is ne-
cessary to correlate the suspicious region locations of abnormal ther-
mograms with the tumor locations in mammograms or FNAC images. In
medical practice, the tumor locations in a mammogram can be cate-
gorized into four quadrants: Upper outer quadrants (UOQ), Upper inner
quadrants (UIQ), Lower outer quadrants (LOQ) and Lower inner
quadrants (LIQ) as shown in Fig. 5. However since IBT is a functional
imaging modality, the radiation emitted from a surface does not have a
sharp boundary and can diffuse from one quadrant to other. Hence,
categorization of the suspicious regions’ locations of the thermograms
in four quadrants may produce an erroneous conclusion, for which
instead of categorizing the tumor locations into four quadrants, we have
just categorized the suspicious areas as in upper half or in lower half of
any breast. Table 6 demonstrates the matching of tumor locations in
breast thermograms and corresponding mammograms or FNAC. The
Patient Ids (as illustrated in Table 3), whose tumor locates either in
upper or lower quadrant of mammograms and thermograms are listed
in Table 6. Along with the upper and lower quadrants, the tumor lo-
cating near the Periareolar region of any breast are listed against the
‘Periareolar’ row of Table 6. However, while matching the tumor lo-
cations in mammograms and thermograms, it is worth to be noted that
as illustrated in Table 3, for all abnormal cases, the location of tumors
in mammograms is not present. Hence, for correlation we have con-
sidered only those Patient ids of Table 3 (1–15, 17, 19, 23, 26–30),
whose mammographic tumor locations are available. Patient Ids of the
subjects having tumors in both the breasts are listed in both left and
right group of each location. As illustrated in Table 6, it has been seen

that like mammography, IBT is also capable of pinpointing the tumor
locations. But, in two cases with Patient Id 4 and 8, as presented in
Table 6, IBT is incapable of showing the tumor location. However, with
the capability of IBT in showing the exact location of tumor in 21 ab-
normal cases out of total 23 cases, the potential of IBT to be used as a
routine check-up tool in asymptomatic patients has been proved.

4. Results

For evaluating the performance of TBA and IBA features in breast
abnormality prediction, the extracted features are categorized into
thirteen sets of features as follows-

(1) Red channel features (RF)
(2) Green channel features (GF)
(3) Blue channel features (BF)
(4) Grayscale image features (GrayF)
(5) Red channel features with p < 0.05 in any case (RSF)
(6) Green channel features with p < 0.05 in any case (GSF)
(7) Blue channel features with p < 0.05 in any case (BSF)
(8) Grayscale image features with p < 0.05 in any case (GraySF)
(9) Combination of all statistical features: RF, GF, BF & GrayF

(RGBGrayF)
(10) Combination of all statistical features with p < 0.05: RSF, GSF,

BSF &GraySF (RGBGraySF))
(11) Combination of all temperature features with p < 0.05 in any

case (STemp)
(12) Mean temperature (MeanTemp)
(13) Combination of MeanTemp with RGBGraySF (SSigTempInt)

Categorization of TBA and IBA features into thirteen different fea-
ture sets is followed by the evaluation of the classification performance
of each of these feature sets. The support vector machine (SVM) with
radial basis function (RBF) kernel has been used for classification of
thermograms. For evaluating the classification performance of each
feature set, three well known and widely used evaluation metrics: ac-
curacy, sensitivity and specificity have been used. The classification
performance of each of these feature sets has been listed in Table 7.

Based on the classification performance of each of these thirteen
feature sets, it has been seen that among all single channel feature sets
(RF, GF, BF, GrayF, RSF, GSF, BSF and GraySF), the BF provides the
highest prediction accuracy of 77.78% with sensitivity of 64.65% and
specificity of 66.16%. However, in comparison to BF, the GSF feature
set provides better sensitivity and specificity of 73.23% and 71.72%
respectively with the classification accuracy of 76.39%. Moreover, in
comparison to these single channel feature sets, the RGBGraySF con-
taining the statistically significant features of all channels provides

Fig 5. The four quadrants of Right and Left breast of a breast thermogram.

Table 6
Location of tumors in mammograms and in thermograms.

Locations of
tumors

Patient Id with tumor

Mammograms Thermograms

Upper (Left) 1, 3, 4, 5, 6, 7, 9, 12, 15, 26,
27, 30,10, 13, 28

1, 3, 5, 6, 7, 9, 12, 15, 26,
27, 30,10, 13, 28

Upper (Right) 11, 14, 19, 23,10, 13, 28 11, 14, 19, 23,10, 13, 28
Lower (Left) 2,8 2
Lower (Right) Nil Nil
Periareolar (Left) 29 29
Periareolar

(Right)
17 17

Table 7
Classification accuracies of each feature set.

Feature sets Prediction performance

Accuracy Sensitivity Specificity

RF 64.17 60.10 51.01
GF 74.17 78.79 63.13
BF 77.78 64.65 66.16
GrayF 74.44 63.13 68.69
RSF 63.50 46.97 66.16
GSF 76.39 73.23 71.72
BSF 68.06 45.96 73.74
GraySF 71.67 52.02 69.70
RGBGrayF 71.50 44.44 41.41
RGBGraySF 82.22 78.79 71.72
STemp 65.33 57.07 43.94
MeanTemp 70.89 62.63 52.53
SSigTempInt 83.22 85.56 73.23
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much better classification accuracy of 82.22% with 78.79% sensitivity
and 71.72% specificity.

Like the intensity features, while evaluating the classification per-
formance of the temperature feature sets, it has been seen that the
STemp feature set that comprises of the statistically significant tem-
perature features provides a poor classification accuracy of 65.33%.
Moreover, the classification performance of MeanTemp feature set is
also not efficient enough to be used solely. However, the SSigTempInt
feature set comprising of MeanTemp feature with the RGBGraySF fea-
ture set provides the highest classification accuracy of 83.22% with
sensitivity 85.56% and specificity 73.23%. Thus, it can be concluded
that consideration and combination of the statistically significant in-
tensity and temperature features is crucial enough to validate the po-
tentiality of IBT in breast abnormality detection.

5. Discussion

In spite of good advancements for diagnosis and treatment, cancer is
still a big threat to our society. Among all cancers, the breast cancer is
one of the leading causes of death among women worldwide and it
becomes a significant public health concern. In India, due to the lack of
medical facilities and poor breast cancer awareness, the breast cancer
mortality rate is very high. Moreover, over the last few decades in India,
the average age of developing breast cancer has shifted to 30–40 years.
But, the restrictions of the gold standard method X-ray mammography
to be used for screening in young women below 40 years of age de-
mands the development of a safe and effective technology for screening
of breast abnormality in young women.

Owing to this requirement of a breast screening modality that is
capable enough to detect the breast abnormality before developing into
a cancerous mass, this study evaluates the potentiality of IBT to be used
as a routine check-up tool in asymptomatic population for early ab-
normality detection. Moreover, due to its non-invasiveness, radiation-
free nature, it is applicable for women of all ages including nursing and
pregnant women. For evaluating the potentiality of IBT, a thorough
analysis of breast thermograms has been made in this study. Before
performing the analysis of breast thermograms, the findings of IBT are
validated with the clinical findings and with the findings of X-ray
mammography and FNAC (if available) reports. Based on the findings
of X-ray mammography/FNAC, the breast thermograms of the experi-
mental dataset are categorized into three distinct classes: Healthy,
Benign and Malignant. The temperature based and intensity based
analysis of breast thermograms of each category concludes that the
temperature and intensity distribution of left breast of a healthy ther-
mogram is almost similar to the intensity distribution of the right
breast. But, in case of benign and malignant breast thermograms, the
intensity or temperature distribution of left breast noticeably varies
from the intensity distribution of right breast. Moreover, with the
highest classification accuracy of 83.22%, IBT can be used for early
breast abnormality detection. Besides, by correlating the tumor location
in thermograms and in mammograms or FNAC, it has been proved that
the IBT is potential enough to be used as a routine check-up tool in
asymptomatic patients and thus, can reduce the breast cancer incidence
and mortality rate.

Although this study shows the efficiency of IBT to be used as a
routine check-up tool, one limitation of this study is the small experi-
mental dataset which we try to address in our future work. Moreover,
the future studies will also deal with a dataset of asymptomatic patients
to validate the findings of this study.

6. Conclusion

In this work, we have investigated the potentiality of IBT to be used
as a screening tool in asymptomatic patients with the objective of de-
tecting a breast disease before the onset of cancer. We perform a mul-
tistage evaluation of IBT to prove the efficiency of IBT. From the

findings of the study, we now believe that IBT is potential enough to
reach the masses rather waiting for masses to reach the tertiary centers
for screening. Moreover, utilization of IBT in early breast cancer
screening will improve the quality of healthcare systems in India by
providing more treatment options to the patients and thus, reducing the
mortality rate of breast cancer.
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