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MMSHRs: a morphology model of suspicious hyperthermic 
regions for degree of severity prediction from breast 
thermograms
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aDepartment of Computer Science & Engineering, Tripura University (A Central University), Suryamaninagar, 
Tripura, India; bDepartment of Radiotherapy, Atal Bihari Vajpayee Regional Cancer Centre, Agartala Govt. 
Medical College, Agartala, Tripura, India

ABSTRACT
The presence of suspicious hyperthermic regions (SHRs) in breast 
thermograms is a prominent indicator of breast pathology, for which 
delineation and analysis of SHRs have a crucial role in early detection of 
breast abnormalities. A novel approach for breast abnormality grading, 
namely the morphology model of suspicious hyperthermic regions 
(MMSHRs), is proposed here. The proposed model first segments SHRs 
from breast-thermograms and then analyzes their morphology to 
grade the thermograms according to their degree of severity. To 
segment SHRs, a simple but effective method that computes the 
similarity score of each pixel with the highest intensity value is 
designed. . The performance of the proposed segmentation method 
is tested on both public and in-house-captured datasets. With the 
optimal values of seven evaluation metrics, the proposed segmenta
tion method outperforms other state-of-the-art segmentation meth
ods. The values of evaluation metrics further justify that the proposed 
SHRs segmentation method addresses all the limitations regarding 
infrared breast thermogram segmentation, and reduces the under- 
segmentation and over-segmentation of SHRs. Following segmenta
tion of SHRs, the MMSHRs extract the corresponding morphological 
features, allowing the classification of thermograms into mild and 
severely abnormal with the classification accuracy of 91% and area 
under the receiver operating characteristic curve of .9998.
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1. Introduction

Breast cancer is the principal cause of cancer-related deaths among women globally, but 
the risk of death can be reduced if the cancer is detected and diagnosed early [1]. Owing 
to the lack of breast screening modalities in younger age groups, it has been reported that 
only 0% and 1.9% of diagnoses were possible under the age groups of 20 and 20–34 years, 
respectively [2]. In India, over the last few decades, the average age of breast cancer 
development has shifted to 30–40 years [3]. With the vulnerability of younger women to 
the advancement of cancer tumours [4] and the radiation risk of X-ray mammography 
(MG) [5–7], the demand for a radiation-free breast imaging modality is increasing for early 
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detection of breast abnormalities in asymptomatic subjects. Infrared breast thermogra
phy (IBT) has become a potential tool for the early detection of breast abnormalities 
because it is radiation-free, non-invasive, and has a sensitivity of 90% [8]. Being 
a functional imaging modality, IBT can capture the temperature emitted by the skin 
overlying a malignancy [9,10]. The increased rate of blood flow and metabolic activity 
to supplement the growth of a tumour cause increased regional surface temperature of 
the breast, which appears as higher temperature regions known as suspicious hyperther
mic regions (SHRs) in breast thermograms [11–14]. In literature, it has been reported that 
in comparison to the thermograms with asymmetric thermal patterns, those exhibiting 
increased nipple temperature, SHRs, and vascular changes may be more suspicious and 
indicate more severe breast problems [11–14]. Moreover, the aggressiveness and prog
nosis of tumours directly influence the thermovascular activities in breasts [4]. Hence, to 
assess the physiological state of breasts, analysis of SHRs may be significant. Additionally, 
by analysing SHRs, it is possible to predict and grade the degree of severity in breast 
thermograms.

While designing an SHRs based breast abnormality grading system, it is apparent 
that the accuracy of the SHRs analysis entirely depends on the efficient segmenta
tion of the SHRs. Although several approaches for the segmentation of medical 
images have been reported in the literature, most of these state-of-the-art seg
mentation methods are image and application-dependent. Hence, their results are 
highly dependent on the corresponding image characteristics. Moreover, segmen
tation of SHRs from breast thermograms is a difficult task because of the complex
ity and diversity of thermal images like there is no clear boundary between an SHR 
and the surrounding region, poor contrast, variation in shape and size of SHRs, and 
locality variation of SHRs, etc. Each of these limitations of thermograms is detailed 
below.

1.1. Lack of clear edges and intensity overlapping

Like the visual images, the thermal images do not contain clear edges. A medical 
thermal image visually represents the surface temperature distribution of a human 
body, for which there is a smooth transition of temperature values from one region 
to another. The intensity values mapped from the temperature values also maintain 
the property of smooth transition in the corresponding thermal images. Because of 
this smooth transition, no sharp discontinuity is present between the regions, making 
it tedious to separate one region from others. As a result, thermal images are blurry 
with no clear edges. The smooth transition also introduces the concept of pixel 
overlapping, where the boundary pixels, that is pixels at the edge of two regions 
have the characteristics of two regions. Because, different regions in a thermal image 
are represented with various pseudo colours, the edge pixels have intensity values 
close to both regions. Therefore, the segmentation of thermogram is a challenging 
task.
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1.2. No definite location of SHRs

The presence of an SHR in a breast thermogram is the most significant marker of breast 
abnormality. However, SHRs are not always confined to a fixed location and may appear in 
more than one location of a thermogram. In addition, SHRs are not sufficiently compact; 
they blow out over a region. Although every SHR within a breast area have equal 
importance, sometimes they do not possess the same intensity values, making some 
segmentation methods ineffective for extracting all SHRs accurately. This may result in 
a missed segmentation.

1.3. No definite shape of SHRs

The SHRs of a thermogram are unique in that the SHRs of two consecutive thermograms 
for the same patient taken seconds apart do not appear exactly the same. Moreover, SHRs 
do not bear any regular shape, for which drawing conclusion based on shape analysis is 
complicated.

Because of these limitations of IBT, very few studies [15,16] have addressed the 
extraction of SHRs for the analysis of breast thermograms. Existing segmentation methods 
for SHRs comprise clustering-based [17–27], deformable model-based [17,27], threshold- 
based [28,29] and region-based segmentation methods [28,29]. Table 1 summarises the 
state-of-the-art segmentation methods. As listed in Table 1, the datasets used for the 
extraction of SHRs are very small in almost all studies, except that by Pramanik et al. [27]. 
Moreover, no report on quantitative evaluation of segmentation errors, such as under- 
segmentation (USeg) and over-segmentation (OSeg) rates of state-of-the-art segmenta
tion methods, were found in the literature review. Thus, the adoption of a particular 

Table 1. The summary on SHRs segmentation methods.
Segmentation 
techniques

No. of images 
used Method used Limitations

Clustering based 
method [17– 
27]

30, 6, 4, 15, 20, 
14, NP, 34, 
12, 20, 74Ab

K-means, fuzzy c-means, mean-shift (MS), 
Expectation Maximization (EM), particle 
swarm optimisation

● Initialisation of cluster number
● Initialisation of cluster center
● Selection of parameters (e.g. 

bandwidth in MS)
● Sometimes long computational 

time.
Deformable 

model based 
method 
[17,27]

30, 74Ab Level set (LS) method ● Initial placement of contour, 
embedding of the object and 
gaps in the boundaries [21]

● Construction of appropriate velo
cities for advancing the LS 
function

Threshold based 
method 
[28,29]

40 images, 
DBT-TU-JU 
[29]: 40 & 
DMR [30]: 22

Thresholding method ● Selection of threshold value
● Not consider the spatial details
● Improper selection of threshold 

may increase over-segmentation 
and under-segmentation

Region based 
method 
[28,29]

44 images, 
DBT-TU-JU 
[29]: 40 & 
DMR [30]: 22

Region shrinking (RASIT), region growing ● Manual selection of seed points,
● Selection of stopping criteria,
● Noise and variation of intensity 

results in holes or 
oversegmentation

*Ab – Abnormal, NP – Not provided, RASIT - Region shrinking based accurate segmentation of inflammatory areas from 
thermograms.

QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL 3



method for SHR extraction is challenging. The literature survey clearly supports the fact 
that no work has been conducted to grade abnormality in breast thermograms to date. 
Several works [15] differentiated thermograms into malignant and benign groups by 
analysing SHRs. However, categorisation of thermograms into benign and malignant 
solely based on findings from thermograms is not convenient as IBT is just functional 
imaging and cannot provide any structural information. Rather, grading the abnormality 
of thermograms as mild abnormal (MA) and severely abnormal (SA) by analysing the SHRs 
is more convenient and will allow subjects having SA thermograms to seek doctor’s 
attention for further evaluation of their breast health.

Since SHRs are only defined through the intensity value changes related to the surround
ing intensity values, developing an automated and efficient SHRs segmentation method is 
technically challenging. Furthermore, owing to the variation in metabolic activities across 
patients, the size, structure, and location of SHRs considerably vary, which in turn prohibits 
the use of prior knowledge on components such as shape and location in segmentation.

Considering the limitations of existing systems, this research focuses on the develop
ment of a novel breast abnormality grading system for rapidly identifying asymptomatic 
patients that need urgent medical attention which will thus, help in the early detection of 
breast abnormalities. The proposed morphology model of SHRs (morphology model of 
suspicious hyperthermic regions – MMSHRs) comprises two major parts: the first 
addresses the automatic segmentation of SHRs from breast thermograms and 
the second analyzes the morphology of the extracted SHRs to predict the degree of 
severity in thermograms. Since the efficiency of the grading system depends on the 
accuracy of the segmentation results; the proposed segmentation method attempts to 
address the segmentation challenges of IBT. In addition, the proposed segmentation 
method attempts to reduce OSeg and USeg error. Figure 1 presents the overview of the 
proposed system. The motivation of the method is to use the fact that SHRs have the 
highest intensity value for which SHRs can be efficiently detached from the remaining 
portion of breast thermograms. Based on this key idea, if the contrast of the intensity 
value of a pixel with the highest intensity value of an SHR is very small, then it has a higher 
chance of belonging to the SHR; in contrast, if the contrast is sufficiently large, then the 
pixel belongs to a non-SHR in the image.

Figure 1. Flow of the MMSHRs.
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The remainder of the paper is divided as follows. The proposed SHRs segmentation 
method is described in Section 2. Section 2 also presents the morphological analysis of 
the segmented SHRs to predict the degree of severity. Details of the experimental 
datasets and extensive experiments performed for the evaluation of the proposed 
MMSHRs system are provided in Section 3 and Section 4 respectively. Section 5 discusses 
the advantages and limitations of the proposed MMSHRs system. Finally, the paper ends 
with the conclusion in Section 6.

2. Proposed methodology

2.1. Stage 1 – segmentation of SHRs

This section describes the proposed SHRs segmentation method for predicting the 
severity of breast abnormalities. In breast thermograms, SHRs exhibit higher temperature 
values for which their mapping to the intensity scale also has higher intensity values. The 
proposed method comprises four steps: First, the breast region (BR) is extracted by using 
a semi-automatic segmentation method, followed by normalisation of the segmented 
images to identify the candidate thermal patches (CTPs) corresponding to SHRs. Third, the 
similarity score of each image pixel with the highest intensity value is computed. Finally, 
the output of the third step is binarized to extract SHRs from breast thermograms. These 
steps are described in detail in the following subsections.

2.1.1. Pre-processing of breast thermograms
As authors intend to segment SHRs within the BR of a thermogram, the extraction of BRs 
prior to SHRs segmentation is crucial. Therefore, at first, the BR from a raw breast 
thermogram in the ‘Rainbow HC’ colour pallet was extracted using a semi-automatic BR 
segmentation algorithm, as discussed in [30]. This algorithm requires human intervention 
to select the lower parabolic curves of both breasts. Then, using the manually selected 
curves, the segmentation algorithm creates a breast mask for each individual thermo
gram, the convolution of which extracts the BR.

The SHRs in breast thermograms characteristically contrast their surrounding regions 
in colour and intensity (as illustrated in Figure 2(a)), and thus can be used as important 
factors for separating SHRs from the surrounding areas. The original RGB breast thermo
grams constitute red, green, and blue channels. Unlike the red and green channels, the 
contrast between SHRs and non-SHRs is high in the blue channel, as shown in Figure 2(d). 
Hence, instead of using the RGB image, the blue channel image, Ib of a thermogram is 

Figure 2. (a) segmented BRs, (b) red channel, (c) green channel, (d) blue channel image, (e) 
temperature scale, (f) low-temperature regions in blue channel, circled in red.
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selected for SHRs segmentation. However, the variation in the dynamic range of Ib from 
different breast thermograms necessitates the normalisation of these images in the range 
of [0–255] prior to the extraction of SHRs. The normalisation procedure for Ib is detailed in 
Algorithm-1. Figure 2(a) illustrates the results of BR segmentation in some sample breast 
thermograms.

2.1.2. Selection of candidate thermal patches
This step attempts to identify all possible thermal patches that may be considered as SHRs. As 
shown in Figure 2(f) , along with the higher temperature regions, some lower temperature 
regions, which are marked with a red circle and represented by the green-blue pseudo-colour 
in RGB breast thermograms (please refer to the Temperature Scale shown in Figure 2(e)), are 
also apparent in Ib. Hence, for the accurate segmentation of SHRs, the selection of CTPs is 
crucial. For this, the corresponding red channel image Ir is used as Ir does not contain the                      

green-blue pseudo colour components of the RGB image as depicted in Figure 2(b), owing to 
the absence of the red component. However, before using Ir for filtering out the lower 
temperature regions or non-CTPs from Ib’, the Ir images are also normalised to the range of 
[0–255]. The procedure detailed in Algorithm-1 was used to normalise the Ir images.

After normalising Ir, the green-blue shade of pseudo colour in RGB thermograms is 
represented by the intensity value [0–70] in the Ir’ image. Hence, using a threshold-based 
method as illustrated in Equation (1), the regions with intensity values less than IThresh in Ir’ 
are discarded from Ib’ and those with intensity values higher than IThresh in Ir’ are main
tained in Ib’ and considered as the CTPs. 

I0bði; jÞ ¼
I0bði; jÞ; if I0rði; jÞ > IThresh
0; if I0rði; jÞ< IThresh

�

(1) 

Algorithm 1: Image Normalization 
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Here, the value of IThresh is 70.

2.1.3. Generation of intensity contrast map based on similarity score
In thermal images, because of the absence of a sharp transition of intensity values from 
one region to others, the boundaries of the CTPs are indistinct, and there is a smooth 
transition of boundary pixels. Hence, to decide if these boundary pixels belong to the 
SHRs, an intensity contrast map (ICM), ɸ was generated based on the key idea of similarity 
between intensity values of the CTPs and the highest intensity value. Each entry of ɸ is the 
similarity score of each intensity value with the highest intensity value. As eachI0b is 
normalised in the dynamic range of [0–255], the maximum intensity value δ in eachI0b is 
255. Then, this maximum intensity value is used to generate ɸ by finding the difference 
between each squared intensity value and δ2 as given in Equation (2)). 

ϕij¼ diffððIb
0

Þij; δÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIb
0
Þij

2
� δ2

q

; "ði; jÞ 2 Ib
0

(2) 

Thus in ɸ, the contrasts of pixels with higher intensity values were found to be very 
small, whereas the contrasts were larger for pixels with lower intensity values. In the ICM, 
to represent the lower difference values as higher similarity scores and larger differences 
with lower similarity scores, the ɸ is complemented. The complemented ICM matrix, ɸc 

resembles with I0band highlights the SHRs in the breast thermogram. Figure 3(d) presents 
ɸc of some sample breast thermograms bearing SHRs (Figure 3(a,b)).

2.1.4. Extraction of suspicious hyperthermic regions
For further analysis of the degree of severity in breast thermograms, instead of similarity 
score values, the actual intensity values of the SHRs are required. Hence, to obtain the 
intensity values corresponding to the high similarity score of ɸc, a binary mask is created 
from ɸc using Otsu’s thresholding method, which chooses a threshold by minimising the 
interclass variance between the black and white pixels [32]. Then, the generated binary 
masks are convolved with the corresponding RGB images, I to obtain the SHRs, Ihs of the 
breast thermograms. The binary masks and segmented SHRs of some sample breast 
thermograms are displayed in Figure 3(e–g), respectively. The corresponding ground 
truth (GT) images of the SHRs are illustrated in Figure 3(f).

2.2. Stage 2 – degree of severity prediction

The second stage of the proposed method aims to categorise SHRs into MA and SA 
thermograms by predicting the degree of severity of the SHRs. For this purpose, the 
dynamic range of each extracted SHR was normalised to the range of [0–255]. To predict 
the degree of severity, some morphological characteristics of these SHRs were critically 
analysed. This stage involved three steps.

2.2.1. Partitioning of segmented SHRs
To analyse the segmented SHRs, the intensity values of each SHR are further partitioned 
into k levels, hsi, i = 1 to k such that each partition contains intensity values in the range of 
[(i-1)*L, (i*L)-1]. Based on the trial-and-error method, authors found that having L = 50 grey 
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levels in each partition is optimal for morphology-based SHRs analysis. As the dynamic 
range of an image containing SHRs is [0-255], so the value L = 50 produces k = 5 hot 
regions within the segmented Ihs.

The partitioning of each SHR was obtained by applying the Algorithm-2 and Figure 4 
illustrates the partitioning of SHRs of a MA and a SA breast thermogram. It is apparent in 
Figure 4 that the first hot region hs1 of the SA thermogram is considerably larger than that             

Figure 3. (a) original breast thermograms, (b) segmented BRs, (c) blue channel images, (d) intensity 
contrast maps, (e) binary masks, (f) ground truth images and (g) suspicious hyperthermic regions.

Algorithm 2: Partitioning of Segmented SHRs 
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of the MA thermogram. Similarly, the second hot region hs2 of the SA thermogram is 
considerably larger than that of the MA thermogram. In contrast, in the MA thermograms, 
the lower temperature (intensity) regions, that is, hs3, hs4 and hs5 are considerably larger 
than those in the SA thermograms. Based on these key characteristics of the SHRs in MA 
and SA thermograms, a feature-based analysis of these segmented SHRs could be 
performed.

2.2.2. Morphology of SHRs
For morphological analysis of the SHRs, the hot regions hsi and hsj are added together, 
where the pixel values of hsi are higher than those of hsj and these merged regions are 
denoted as HSi, where i = 1 to 5. Thus, each evolving region encompasses the previous 
regions, as demonstrated in Equations (3)–(7). When two subsequent hot regions merge, 
they start sharing the same characteristics. 

HS1 ¼ hs1 (3) 

HS2 ¼ hs1 [ hs2 (4) 

HS3 ¼ hs1 [ hs2 [ hs3 (5) 

HS4 ¼ hs1 [ hs2 [ hs3 [ hs4 (6) 

HS5 ¼ hs1 [ hs2 [ hs3 [ hs4 [ hs5 (7) 

For each HSi, a set of four shape features are computed as follows:

● Area: Actual number of pixels in each HSi.
● Equivalent diameter (ED): Diameter of a circle with the same area as region HSi

● Convex area (CA): Area of the smallest region that is convex and contains the original 
HSi

Figure 4. Clustering output of (a) mild abnormal and (b) severely abnormal breast thermograms.
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● Fractal dimension (FD): This measures the complexity of an object as the ratio of 
log(B) to log(r), where B is the number of boxes that cover HSi and r is the magnifica
tion or inverse of the box size [33,34].

In addition to the four features discussed above, another feature named relative suspi
cious area (RSA) is computed to characterise the SHRs of MA and SA thermograms, as 
follows:

● Relative Suspicious Area is the ratio of the number of pixels with intensity values 
≥150, to the number of pixels with intensity values <150 given by: 

RSA ¼
hs1 þ hs2

hs3 þ hs4 þ hs5
(8) 

2.2.3. Designing classifiers
To predict the degree of abnormality based on the computed feature values and to 
differentiate the thermograms into MA and SA categories, authors used the support 
vector machine (SVM). This choice of using SVM was motivated by the experimental 
findings of the works [11,30], where SVM exhibited the best classification performance 
among different classifiers. The SVM is the most widely used supervised learning method 
for classification. It can minimise the empirical classification error and maximise the 
geometric margin that maximises the class separation [34]. The performance of SVM 
with three different kernels [12]: i) Gaussian radial basis function (SVM_R), ii) linear 
(SVM_L), and iii) polynomial (SVM_P) were explored to obtain the best classification 
accuracy. Except for the linear kernel, the parameters of the other two kernels were 
altered to obtain better classification accuracy.

3. Experimental setup

To assess the performance of the proposed MMSHRs, the presence of a sufficiently large 
GT annotated breast thermogram database is crucial. However, as reported in [29], only 
one publicly available breast thermogram database, the Database of Mastology Research 
(DMR) [35], has been found in the literature to date. It is an unbalanced dataset with 240 
samples of healthy subjects and 47 samples of unhealthy subjects and does not contain 
the GT images of SHRs. Therefore, considering all of these factors it is imperative to design 
a GT-annotated breast thermogram database. However, IBT is very sensitive to environ
mental changes, which may reduce the potential of IBT in early breast cancer detection, 
leading to the standardisation of the breast thermography procedure [13,29]. Hence, to 
acquire thermograms, a standard acquisition protocol suite has been designed [29] 
comprising a number of important parameters: patient preparation, patient acclimation, 
patient intake form, examination room condition, patient position, and acquisition views. 
Breast thermograms were acquired using a FLIR T650sc thermal camera with thermal 
sensitivity of <20mK @ 30°C and image resolution of 640 px x 480 px. The name of the 
designed database is the Department of Biotechnology-Tripura University-Jadavpur 
University (DBT-TU-JU) breast thermogram database. To validate the images of the DBT- 
TU-JU database, the database was also annotated with the findings of clinical breast 
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examination (CBE), X-ray mammography (MG), and fine-needle aspiration cytology (FNAC) 
(if available) of each subject undergoing IBT. For almost all cases, the results of all 
examinations (CBE, MG, and FNAC) were in agreement with the findings of the IBT 
analysis. In addition, the DBT-TU-JU database was also annotated with the GT images of 
the SHRs generated by four medical experts, which enables the researchers to measure 
the effectiveness of their proposed SHRs segmentation algorithms. The procedure for 
generating the GT images of breast thermograms from the DBT-TU-JU database is 
detailed in [29].

Two datasets, D1 and D2 were formed corresponding to the in-house acquired DBT-TU 
-JU breast thermogram database [29] and the publicly available DMR database [30] 
respectively. The D1 dataset comprises 70 SHRs bearing breast thermograms, whereas 
the D2 dataset consists of 30 SHR bearing breast thermograms. Because the GT images of 
the DMR are not available, the authors received help from medical experts to generate the 
GT images.

As the proposed method involves two stages, the evaluation was performed at two 
levels. First, the performance of SHR segmentation in every thermogram was evaluated 
using the provided GT images. For efficient abnormality grading, the segmentation 
performance must be as high as possible, because the number of pixels detected as 
SHR is crucial for predicting the degree of severity in thermograms. To evaluate the 
performance of the segmentation stage, a set of the five most widely used supervised 
evaluation metrics, namely, the Dice similarity coefficient (DSC) [36,37], Jaccard index (JI) 
[37], precision (Pr) [38], recall (Rc) [38] and root mean square (RMS) [39] were used. Values 
of DSC, JI, Pr and Rc closer to 1 indicate better segmentation quality, whereas values closer 
to 0 indicate poor segmentation. In contrast, RMS values closer to 0 indicate better 
segmentation, and values closer to 1 indicate poor segmentation. The first four evaluation 
metrics are commonly known as spatial-overlap-based metrics as they are based on four 
basic cardinalities: true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN), each of which measures the amount of overlapping or any missed area 
between the segmentation result and the binary GT. Regarding segmentation, the TP, TN, 
FP, and FN are defined as follows: TP is the number of SHR pixels correctly detected as SHR 
pixels, TN is the number of non-SHR pixels correctly detected as non-SHR pixels, FP is the 
number of non-SHR pixels falsely detected as SHsR pixels; FN is the number of SHR pixels 
falsely detected as non-SHR pixels.

In addition, the quality of segmentation is measured by quantifying the USeg and OSeg 
of the segmented outputs. USeg and OSeg occur when the segmented SHR is larger and 
smaller than the annotated GT image respectively, as shown in Figure 5(a). For the 
computation of USeg and OSeg, the work of M. Belgiua, and L. Drǎguţb [40] was followed. 
The computation of these seven evaluation metrics is followed by the computation of 
these metrics from other state-of-the-art segmentation methods to make a comparative 
study of the proposed segmentation method.

The second level of evaluation is very important in perspective of breast screening 
because it evaluates the performance of the second phase of the MMSHRs in differentiat
ing the MA thermograms from the SA thermograms. Categorisation of abnormal thermo
grams based on the combined report of clinical examination, patient symptoms, MG and 
FNAC findings is considered the gold standard for evaluation. Abnormal thermograms of 
subjects whose MG or FNAC show the presence of either benign or malignant tumours are 
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labelled as SA thermograms. In contrast, abnormal thermograms whose FNAC reports are 
not available and MG could not reveal the presence of any tumour or calcification but are 
found to be abnormal clinically, or the corresponding subjects are suffering from several 
breast problems including blood discharge, pus formation, the presence of lumps for 
a long period of time are labelled as MA. However, in the DMR, thermograms are not 
categorised as MA or SA; they are categorised as either ‘sick’ or ‘healthy’. Moreover, some 
subjects in the healthy group, suffer from breast problems, and their thermograms reveal 
the presence of abnormality through SHRs. For evaluation purposes, the authors consid
ered these healthy thermograms as MA thermograms because they are suffering from 
some minor breast problems and the thermograms of ‘sick’ subjects are considered SA 
thermograms. However, because the experimental DMR dataset was small, the thermo
grams of both the DBT-TU-JU and the DMR were combined to evaluate the screening 
phase of the proposed MMSHRs method. The diagnostic performance of the proposed 
model was evaluated by computing the five most widely used performance indices: 
accuracy (Acc), sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative 
predictive value (NPV).

All the experiments were performed in a system with moderate hardware specifica
tions, including a 64 bit Windows 10 OS, Intel® i3-Core™ processor, and 4 GB of RAM. To 
implement the MMSHRs, the MATLAB 2015 interface was employed.

4. Experimental results

4.1. SHRs segmentation phase

A qualitative comparison of the segmentation results of the MMSHRs with the GT images 
and the output of other state-of-the-art SHR segmentation methods is shown in Figure 6. 
To achieve an unbiased comparison of the SHR segmentation methods, the optimal 
cluster number or optimal window size for the clustering methods (EM, FODPSO, KMC, 
FCM, MS) was selected based on the I-index [41] value, which is known as a cluster validity 
index. Figure 6(a) shows sample breast thermograms, with the corresponding GT images 
of the SHRs of the DBT-TU-JU dataset in Figure 6(b). Comparing the shapes of the 
segmented SHRs of the proposed method (Figure 6(c)) with the GT images proved that 
the proposed method can extract the exact shapes of SHRs. In contrast, KMC and FCM 

Figure 5. (a) sample breast thermogram showing the GT, OSeg and USeg regions of an SHR; (b) TP, TN, 
FP and FN regions of a SHR with respect to a GT image and a segmented image.
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Figure 6. (a) Segmented BRs of some sample breast thermograms, (b) corresponding GT images, 
segmentation output of (c) proposed segmentation method, (d) KMC, (e) FCM, (f) multi-seeded region 
growing, (g) FODPSO, (h) MS, (i) expectation maximization, (j) threshold based, and (k) CV level set 
method.
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produce OSeg results as some necessary regions are discarded as background areas. From 
Figure 6(f), the segmentation result of RG is also similar to the GT images. Moreover, 
comparing the results of FDPSO and MS (Figure 6(g–h)) respectively with GT images, 
FDPSO and MS produce USeg-segmentation results by considering some non-SHRs as 
SHRs. Similar to KMC and FCM, the EM and threshold-based segmentation methods also 
produce OSeg results. Additionally, similar to FDPSO and MS, the CV-LS method produces 
USeg results, as shown in Figure 6(k). Thus, based on the comparison results, the proposed 
MMSHR is efficient enough for segmenting SHRs.

In addition to the qualitative evaluation, a quantitative evaluation and comparison 
of the segmentation performance of the proposed method with other state-of-the-art 
SHRs segmentation methods are provided in Table 2. Here, the mean and variance of 
all seven segmentation evaluation metrics: DSC, JI, Pr, Re, RMS, OSeg, and USeg are 
listed. Further, in Table 2, the best metric values are shown in boldface for both 
datasets. As observed, the segmentation performance of the proposed method is 
better than those of the other methods in terms of all the computed evaluation 
metrics in both the DBT-TU-JU and DMR datasets. Along with higher mean DSC, JI, Pr 
and Re values, the lower variance of these metrics indicates the stability of the 
proposed segmentation method for both datasets. Although the DSC value of the 
DLPE-based LS [27] for the DMR dataset is better than that of the proposed method, 
the value of a single metric cannot prove its superiority on the DMR dataset. 
Moreover, with lower RMS values, the proposed segmentation method proved its 
efficiency in accurate SHRs segmentation. By comparing the OSeg metric values of all 
methods, it was found that FDPSO outperforms the proposed method regarding 
OSeg. However, considering both the OSeg and USeg values, the proposed method 
outperforms all the state-of-the-art methods.

4.2. Evaluation of degree of severity prediction

This section presents an evaluation of the effectiveness of the proposed MSHRs in terms 
of the degree of abnormality prediction. The corresponding objective is to quantify the 
relative contribution of SHRs segmentation and SHRs morphology to the degree of 
abnormality prediction, in contrast to using image descriptions from the entire BR. To 
evaluate the classification performance of the proposed MMSHRs system, only statisti
cally significant features were considered. Figure 7 illustrates the boxplots of each 
feature value computed from each HSi. To evaluate the statistical significance of these 
computed features, the Mann-Whitney-Wilcoxon (MWW) test with the significance level 
0.001 was employed, and the corresponding p-values are shown in Figure 7. As depicted 
in Figure 7(a–d), the area, ED and FDof the SA thermograms are considerably larger than 
those of the MA thermograms. However, the p-values (p < 0.001) of the above- 
mentioned features at each HSi (excluding the area and ED of HS5 and FDs of HS4 and 
HS5) prove the efficiency of the three features in differentiating MA thermograms from 
SA thermograms. Unlike these features, with a p-value <0.001, the CA of only HS1 was 
found to be statistically significant in differentiating the MA thermograms from the SA 
thermograms. Likewise, the feature value distributions of the RSA computed from the 
MA and SA thermograms (Figure 7(e)) also indicates that the MA thermograms have 
significantly smaller (p < 0.001) RSA compared with the SA thermograms. To discard the 
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redundant features, the relationship between the statistically significant features (p <  
0.001) was explored across the MA and SA thermograms by doing a correlation analysis. 
A pictorial representation of the correlation values between the statistically significant 
features of the MA and SA is demonstrated in Figure 8. As observed, all statistically 
significant features of both MA and SA are weakly correlated with each other, hence, all 
these 13 statistically significant features were fed to the SVM classifier, and five-fold 
cross-validation was employed. The classification performance of the proposed model 
using SVM with three different kernels is presented in Figure 9. As observed among the 
three kernels, SVM_R provided the highest classification accuracy. The PPV and NPV of 
SVM_R were also higher than those of SVM_L and SVM_P. The sensitivity of SVM_P and 
SVM_R were the same. Similarly, the specificities of SVM_L and SVM_R were the same. 
However, considering the values of all five-evaluation metrics, SVM_R yielded the high
est classification performance.

Moreover, to determine the effectiveness of the proposed MMSHRs over the 
other methods, this section presents a comparative study. However, due to the 
absence of a degree of abnormality prediction system in the literature, the authors 
considered three different sets of features for comparison: first-order statistical 
(FOS) [13,28], grey level co-occurrence matrix (GLCM) [13,14,30,42], run-length 
(RL) [42] features as follows. The singular value (SV) used in [11] was also consid
ered for comparison.

Figure 7. Box plots exhibiting the distribution of feature values of (a) area, (b) ED, (c) CA, (d) FD and (e) 
RSA obtained from both MA and SA. The p-values obtained for each feature using the MWW test is 
also specified alongside the corresponding each feature.
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(1) FOS features: the FOS feature set contained six features: mean, skewness, entropy, 
kurtosis, standard deviation, and variance

(2) GLCM features: The GLCM feature set contained 17 features including 
angular second moment, contrast, correlation, dissimilarity, sum of squares (var
iance), entropy, homogeneity, inverse difference moment, inverse difference 

Figure 8. Correlation among statistically significant features between MA and SA groups.

Figure 9. Classification performance of the proposed MMSHRs system in breast abnormality detection.
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moment normalised, sum average, sum variance, autocorrelation, sum entropy, 
difference variance, difference entropy, information measures of correlation 1 and 2 
from the co-occurrence matrices. The GLCM features were computed in all four 
directions (0°, 45°, 90° and 135°) and the averages of feature values in all four 
directions were considered for comparison.

(3) RL features: The RL feature set comprised 11 features including short-run emphasis, 
long-run emphasis, grey-level non-uniformity, run-length nonuniformity, run per
centage, high grey-level run emphasis, low grey-level run emphasis, short-run low 
grey-level emphasis, short-run high grey-level emphasis, long-run low grey-level 
emphasis and long-run high grey-level emphasis. These features were computed in 
all four directions (0°, 45°, 90° and 135°) and the average of feature values in all four 
directions were considered for comparison.

(4) Singular values: As described in [11], the SV feature set contains the breast 
abnormality grading (BAG) index value, which is computed by summing the first 
two singular values computed from each thermogram.

For an adequate comparison, the features were extracted in two manners, without and 
with SHRs segmentation. For the case without SHRs segmentation, the left and right breasts 
were separated from the segmented BRs, as shown in Figure 10. The abovementioned 
features were then computed by computing the bilateral feature difference between the 
left and right breasts. Details on the feature extraction without SHRs segmentation are 
provided in [31]. For the case with SHRs segmentation, features were extracted only from 
the segmented SHRs. The classification performances of these extracted features were then 
evaluated using SVM with all three kernels. Note that for comparison, the authors consid
ered only kernels with which each feature set provides the best performance.

As illustrated in Figure 11, among all the feature sets extracted from the entire BRs or 
from the segmented SHRs, the proposed MMSHRs system provides the best classification 
accuracy. However, by comparing the classification performance of different features with 
and without SHRs segmentation, it was observed that except for the SV feature set, the 
classification performance of the other three feature sets FOS, GLCM and, RL are better 
when extracted from the segmented SHRs. In addition to the accuracy, the receiver 
operating characteristic (ROC) curve for each feature set with the SVM classifier is plotted 
as in Figure 12 for comparison. Similar to other performance measures, the area under the 

Figure 10. Extraction of feature values from breast thermograms in the case without SHRs 
segmentation.
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ROC curve (AUC) further proves that the proposed system outperforms other feature sets. 
As depicted in Figures 12(a,b), the AUC of the MMSHRs is considerably better than those 
of the other four sets of features, whether extracted with or without SHRs segmentation. 
Thus, the proposed method outperforms other widely used feature sets.

5. Discussion

The proposed MMSHRs system relies on the morphology of SHRs, for which the accurate 
segmentation of SHRs is crucial. Considering this, an efficient SHRs segmentation 
method was developed followed by the morphological analysis of the segmented 
SHRs. This section discusses the advantages and limitations of the proposed MMSHRs 
system.

Figure 11. Comparison of classification performance of the proposed MMSHRs with other state-of-the- 
art feature sets.

Figure 12. The ROC curves of each feature set obtained (a) with SHRs segmentation and (b) without 
SHRs segmentation.
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5.1. Addresses the limitations of infrared breast thermograms

As described in Section 3, the proposed segmentation method generates an ICM for 
each thermogram, where each entry in the map is the similarity score of the intensity 
value of each pixel with the highest intensity value. While computing the similarity 
score of all pixels in a thermogram, it was noticed that irrespective of the location and 
shape of SHRs, the similarity score of the pixels in SHRs was higher than that of the 
pixels in non-SHRs. Hence, based on the similarity score values, it is possible to extract 
SHRs from anywhere within a BR. Thus, the proposed segmentation method prevents 
missed segmentation.

5.2. Minimisation of parameter selection

Unlike other state-of-the-art methods, the proposed SHRs segmentation method 
minimises parameter selection. In clustering-based segmentation techniques, the 
selection of an optimal cluster is very challenging. Moreover, the segmentation results 
vary with different cluster numbers. To obtain better accuracy in segmentation, the 
I-index was used for optimal cluster selection and then, compared the results. Similar 
to clustering techniques, in RG, a seed point is necessary to start the segmentation 
and a threshold value must be set to stop the iteration. Further, in deformable model- 
based segmentation methods, the initial contour should be selected to start the 
segmentation process for which the locations of the SHRs should be known prior to 
the segmentation. Moreover, prior to segmentation, the number of iterations must be 
provided to stop the iteration. Because, the segmentation output depends on the 
number of iterations, providing an optimal number of iterations is difficult. In contrast, 
the proposed segmentation method requires only one threshold value (in Otsu’s 
Thresholding technique) to produce the binary segmentation results. Although the 
number of parameters in the threshold-based segmentation method and the pro
posed method is same, the accuracy of the proposed segmentation method is con
siderably higher than that of the threshold-based segmentation method, as shown in 
Table 2.

5.3. Minimisation of under and over segmentation

As illustrated in Table 2 for both the DBT-TU-JU and DMR datasets, LS and MS overcome 
the drawback of OSeg at the cost of very high USeg. In contrast, KMC, FCM, RG, EM, and 
thresholding methods result in low USeg values but very high OSeg values. Considering 
both of these parameter values to measure the accuracy of segmentation, the proposed 
segmentation method outperforms the others as minimal OSeg and USeg values are 
produced in combination.

5.4. Improves SHRs segmentation accuracy

To extract efficient morphological features of SHRs and grade the degree of abnormality 
in breast thermograms, it is imperative to accurately segment SHRs. From the comparison 
of the segmented SHRs with the GT images (i.e. Figure 6 in Section 3), the proposed 
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segmentation method can extract SHRs more accurately than other state-of-the-art 
methods. Similarly, the quantitative comparison also proves the superiority of the pro
posed segmentation method over the eight state-of-the-art methods reported in other 
studies. As shown in Table 2 the higher mean DSC, JI, Pr and Re values and the lower 
variance of these metrics indicate the stability of the proposed segmentation method for 
both the DBT-TU-JU and DMR datasets.

5.5. Improves classification accuracy

While designing a CAD system for disease diagnosis, obtaining better accuracy is the key 
objective. Accordingly, instead of using the features of entire breasts, the morphological 
features of SHRs were utilised to grade the degree of abnormality in breast thermograms. 
As depicted in Figure 11, the morphological feature provides better classification accuracy 
than other state-of-the-art features. Moreover, as shown in Figure 11, in comparison to 
features extracted without SHRs segmentation, the features extracted from the segmen
ted SHRs provide better classification accuracy.

5.6. Limitations

Because of the difficulty in visualising temperature differences in thermograms, IBT uses 
pseudo-colours to represent temperature variations across a region of interest. In such 
representation, brighter colours like white, yellow, and red indicate higher temperatures, 
whereas darker colours such as purple, dark blue, and black indicate cooler temperatures. 
To represent thermal emission, different pallets with various pseudo-colours are used in 
IBT, among which the ‘Rainbow HC’ colour palette was employed in this work to visualise 
the temperature difference. Therefore, the performance of the proposed segmentation 
method may vary if applied to different palettes of pseudo-colours to represent breast 
thermograms. Consequently, the performance of the degree of abnormality may also vary 
for different palettes of pseudo-colours.

6. Conclusion

The appearance of SHRs in breast thermograms is the most common marker of breast 
abnormalities. Accurate segmentation and analysis of SHRs are crucial for grading the 
severity of breast thermograms, which may assist the radiologists in the early diagnosis of 
breast disease. However, due to the limitations of breast thermograms, the accurate 
segmentation of SHRs is challenging; hence, analysis of SHRs for predicting the degree 
of severity may result in erroneous conclusions. Therefore, this study developed the 
MMSHRs; the first stage of MMSHRs involved a novel segmentation method based on 
thermal image characteristics for precisely segmenting the SHRs and in the second phase, 
morphological analysis of the segmented SHRs was performed to grade the degree of 
severity. The notable contributions of this study are as follows.

(1) Segmentation of SHRs: An SHR segmentation method based on similarity scoring was 
proposed to effectively handle the issues associated with the segmentation of SHRs.
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(2) Extensive evaluation of the proposed SHRs segmentation method: An extensive evalua
tion of the proposed SHRs segmentation method with other state-of-the-art image 
segmentation methods was performed. The results prove the efficiency of the pro
posed method in the accurate delineation of SHRs in abnormal breast thermograms.

(3) Design of a novel breast abnormality grading system based on the morphology of 
segmented SHRs: A morphological analysis of extracted SHRs was performed to 
predict the degree of severity in abnormal breast thermograms. The experimental 
results show that the proposed MMSHRs system is potential enough to predict the 
degree of severity.

The proposed segmentation method achieved segmentation of SHRs with significant 
accuracy. The qualitative and quantitative comparison results of the proposed segmenta
tion method with other state-of-the-art segmentation methods reveal that the proposed 
method is efficient and stable enough for segmenting SHRs. In the second phase of the 
proposed MMSHRs system, a set of 13 statistically significant morphological features was 
considered for grading the degree of severity in breast thermograms. The highest 
classification accuracy of 91% with a sensitivity of 91.30% and specificity of 90.32% was 
obtained with the SVM_R classifier. Moreover, from the comparison of the classification 
performance of the proposed MMSHRs system with those of other state-of-the-art feature 
sets, the proposed system provides the best classification accuracy among all the feature 
sets extracted from entire BRs or from segmented SHRs. Designing such a non-invasive 
type and non-radiating imaging-based breast abnormality grading system will help the 
remote population to undergo routine breast screening, and if any abnormality is 
detected, they can seek medical attention for further evaluation of their breast health. 
This may contribute to lowering the mortality rate of patients with breast cancer.

Although it is evident that the proposed MMSHRs system can assist the physicians in 
making accurate and early diagnostic decisions to save lives, in future by the expansion of 
the training set to a large extent the authors can further confirm the strength and 
limitations of the proposed MMSHRs system. Moreover, a major breakthrough in medical 
image analysis is the emergence of a deep convolution neural network that can extract 
small bits of information from large datasets. Therefore, the application of these algo
rithms to breast thermograms is the goal of future work, which may help in achieving 
higher classification accuracy.
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