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Abstract
Object detection in adversarial atmospheric attacks, such as fog, rain, low light, and dust conditions, is a challenging task with

regards to computer vision. Moreover, the applicability of convolutional neural network-based object detection architectures

in various weather-affected night-time thermal scenes has not been extensively reported in recent and past literatures. The

extraction of region of interest through anchors from each multi-resolution feature map (FM), either shallow or deep, suffers

from several issues in adverse weather-degraded scenarios. Our proposed architecture, namely adverse weather-affected night

scene restorator cum detector net (AWRDNet), focuses on the process of recovering such adverse weather-degraded video

frames to restored frames through deeper convolutional layers. Further, our network reduces the time-consuming generation

of pre-defined anchors in each FM at a deeper de-convolution layer, which combines different scales and aspect ratios for

anchor boxes from multiple sets to naturally handle objects of various sizes. Considering the multi-scale anchor boxes at

multiple set, an anchor refinement strategy has been applied to reduce memory consumption. The performance of the

AWRDNet architecture is evaluated using standard detection performance metrics over the Tripura University Video Dataset

at Night Time (TU-VDN) dataset which contains objects with annotated bounding box of the image frame sequences, and the

available PASCAL VOC 2007 2012 datasets, and ZUT thermal dataset.
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1 Introduction

Under adverse weather conditions through atmospheric

particles, the thermal infrared radiation signal must travel

from the target to the camera detector sensor. Therefore,

most signals can be altered or can lose their key charac-

teristics along the way because of absorption and scattering

by medium aerosols [1, 2], which produces blurry effects in

the scenes. In case of visual sensors, the effects of different

adverse atmospheric particles yield different degraded

scenarios. Several methodologies have been developed for

the restoration of different degraded scenarios, such as

scattering model and dark channel prior. In thermal sen-

sors, the different types of degradation caused by different

atmospheric particles are indistinguishable, i.e., the effects

are similar to the blur effect. Consequently, using thermal

sensor-based frames for designing a single model to handle

degraded blur thermal scenes for restoration via deblurring

is advantageous. This encourages us to design a novel

deeper convolution network, which is briefly elaborated in

Section IV. Therefore, we address the problem of gener-

ating object detection system over atmospheric degraded

scenarios. So far, many methods have been studied in

computer vision for the above purpose, such as deep

learning approaches [3, 4]. However, these deep approa-

ches that are specially designed for producing high-reso-

lution image are not for object detection purposes, and they

rely on the context of small image patches. Therefore, we
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use the contextual information spread over the whole

image to restore the atmospheric degraded images for more

accurate object detection even in adverse atmospheric

realistic scenes.

However, there is still a scarcity of video dataset object

detection tasks that provide balanced coverage in weather-

degraded outdoor scenes, especially at night. A satisfactory

solution for night-time is necessary because darkness

causes major safety problems because of collision of

objects [5]. Furthermore, for detecting objects, far infrared

cameras enable robust object detection irrespective of the

atmospheric conditions because the effect of bad atmo-

sphere decreases with the increase in spectrum wavelength

[2]. To the best of our knowledge, object detection under

adverse atmospheric conditions with night vision is very

rare. Therefore, we provided a newly generated night-time

dataset for detecting objects, which is briefly discussed in

Section III. However, there have many key issues related to

object detection at night [6, 7], such as flat and cluttered

backgrounds.

There are two approaches to real-time detection of

objects; two-stage [9, 10] and single-stage [13, 14] detec-

tors. Multi-resolution FMs in single-stage were success-

fully used in object detector networks in [15, 18] for the

problem of object detection; however, they have the fol-

lowing limitations. (i) Affect of shallow layers over smaller

scale objects: The initial shallow layers of the single-stage

object detector networks are not useful in weather-de-

graded scenes because of its lack of efficiency in the

restoration task. As consequences, the performance in

detection of long distance based smaller scale objects from

sensors is becoming poor. Because the quality of outdoor

images is affected by intensity, colour, polarization, and

coherence of the light source due to scattering by medium

aerosols [3, 4]. As a result, the contrast of the images is

directly affect the shallow layers. (ii) Low resolution of big

scale objects: The well restoration at deeper layers works

efficiently, which are specially for detecting bigger objects;

however, it suffers from low-resolution affects as there is

no direct relationship exists among adjacent pixels on the

output feature map. To mitigate the problem, we utilized

the up-sampled feature map.

The above-mentioned approaches focus on detecting

objects in everyday realistic scenes containing common

objects. To the best of our knowledge, till date, no network

has been proposed for outdoor scenes that are affected by

several atmospheric conditions. In such complex scenes,

the region proposal methods that typically rely on inex-

pensive features, such as selective search (SS) [12], which

greedily merges super pixels based on engineered low-

level features, is not suitable because of the blurred, flat, or

cluttered textual nature of the scenes. As shown in Fig. 1a,

it is difficult to regress region proposals to precisely

surround the object (for instance, the pedestrian shown in

Fig. 1 sample frame which is collected from the TU-VDN

[6, 7] dataset under rainy condition at night-time.). There

are many unwanted small region proposals generated by

SS, which is because super pixels over flat or cluttered

regions do not merge. In contrast, as shown in Fig. 1b, we

adopt the strategy of pre-defined anchor boxes with several

aspect ratios and scales, which is similar approach as in

faster-RCNN [11]. These pre-defined anchors detect the

pedestrian with better initialization that is the strength of

single-stage networks which reflect the drawbacks of the

two-stage region proposal networks.

The primary contributions of this study are summarized

as follows. (i) In this study, we describe a comprehensive

thermal video dataset of outdoor night adverse weather

scenes, namely TU-VDN which consists of 60 video

sequences and bounding box-based ground-truth of 22,030

number of frames. (ii) We introduce a single-stage

AWRDNet architecture for detecting objects more accu-

rately over degraded atmospheric scenes. (iii) We gener-

alize AWRDNet architecture (i.e., PART-A) for restoration

of degraded frames before object detect task. (iv) To

achieve high detection accuracy, at anchor generation

phase, we create anchor boxes with several aspect ratios

and anchor scales only on deeper de-convoluted restoration

FM. We also adopted an anchor refinement strategy to

consume lower memory. (v) Experimental analysis on TU-

VDN dataset reveals that the performance accuracy in low-

light or rainy conditions is higher than that in dusty or

foggy conditions. The ablation experiments also disclose

that AWRDNet in a single-stage network outperforms than

the two-stage networks. Furthermore, experimental analy-

sis extended on PASCAL VOC dataset, and a comparative

assessment on the ZUT thermal dataset also done.

The remainder of this study is organized as follows. In

Sect. 2, we present a brief survey over deep architectures-

based object detection. In Sect. 3, we describe the brief

dataset design, ground truth generation, and statistics. We

define the problem in Sect. 4 and describe the proposed

architecture in Sect. 5. In Sect. 6, we present a complete

evaluation of the captured dataset, followed by a discussion

of the experimental results of the proposed architecture and

a performance comparison with state-of-the-art approa-

ches. In Sect. 7, we perform complexity analysis. Finally,

in Sect. 8, we present the conclusions of this study and

discuss future work.

2 Related work

Recent advances in object detection research areas in

computer vision are driven with rapid successes of deep

learning and convolutional neural network (CNN). Zhao
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et al. [8] presented an overview of modern object detection

approaches. There are two approaches to real-time detection

of objects; two-stage and single-stage detectors. The two-

stage detectors represented by the region CNN (RCNN)

family [9–11] usually attain an accurate yet relatively slow

performance. First, these detector families regress the pre-

defined anchors with the help of hypothesis region propos-

als, such as region proposal networks (RPNs) [11] or

selective search (SS) [12], and then run a classifier on these

proposed boxes, which are complex pipelines that slow

down the process for optimization. In contrast, detecting

objects using one-stage detectors [13–15] directly regresses

the coordinates from the pre-defined anchors, which results

in a significant improvement in detection speed.

Two-stage-based methods The Szegedy et al. [23] and

region CNN (RCNN) [9] models use same network archi-

tecture, wherein Szegedy et al. [23] trained their model

from random initialization, and RCNN [9] uses supervised

ImageNet pre-training to get 30% more mAP. Hoffman

et al. [19] trained RCNN through transfer learning for

classes that have image labels. In [37], Li et al. proposed an

efficient regression model based on a generic CNN-based

classifier, called adaptive deep CNN (ADCNN). ADCNN

has been separated into two parts according to the function

of the convolutional layers. The first part is a strong feature

extractor based on the generic CNN-based classifier (the

pre-trained CNN), and the second part is a special CNN

architecture used for location prediction. The proposed

method to construct surveillance scene-specific over only

two challenging tasks, i.e., pedestrian and vehicle detec-

tion. These methods are mainly used for classification and

refining bounding box by regression; however, the object

coordinates are not predicted. This problem can be

addressed in the following manner. (i) The overfeat [24]

method predicts the object coordinates for a single object.

(ii) The multibox methods [25, 26]—generalize the over-

feat method to predict multiple class-agnostic boxes. (iii)

The disadvantage of these multibox approaches are that

they do not share features between region proposal and

detection networks. Spatial pyramid pooling networks

(SSPnets) [20] and Fast-RCNN [10] were proposed to

speed up RCNNs by end-to-end detector training on shared

convolutional features. The popular region proposal

approaches that are used for RCNNs are SS [12] and

Edgeboxes [27] for object detection. At this point, Cheng

et al. [40] generated initial object proposals by hierarchical

super-pixels using a tree-organized structure. Then CNN

has been learned to select only a few proposals via object

refinement. To address the proposed problem, authors start

with adopting super-pixel hierarchy (SH), which is a

spanning tree image structure for efficiently generating

hierarchical super-pixels. The bounding boxes enclosing

the generated super-pixels are treated as initial object

proposals. For more surveys over proposal algorithms

follow an article by Hosang et al. [28]. The generation of

region proposal using external algorithms [12, 27] as

independent module besides detector network is time

consuming. Therefore, a new faster-RCNN [11] was pro-

posed to improve the quality of proposals by a RPN. It is

constructed using some pre-defined anchors at each loca-

tion on a regular grid. Chen et al. [38] introduced a net-

work, namely, ‘PDC-Net’ on a two-stage base network

Faster-RCNN. This network specially analyze the proce-

dure of statistical dependency between object proposals

and refined bounding boxes to calibrate incorrect object

category prediction detection results. Jie et al. [39] also

presented a framework utilizing fully convolutional net-

works (FCN) to produce high-level semantic object pro-

posal to localize object positions. It trains an object/non-

object binary classifier using an FCN on patches from

images with annotated objects. The FCN can take an input

image of arbitrary size and output a dense ‘‘objectness

map’’ showing the probability of containing an object for

each corresponding box region in the original image.

Single-stage-based methods It is heuristic that the higher

accuracy of two-stage methods comes with two advan-

tages: two step regression and relatively accurate features

for detection. Moreover, this two-step regression makes the

approaches slow. To reframe object detection with infer-

ence speed, the single-stage approaches are used. One of

the very first method, You Only Look Once (YOLO) [13]

is a single regression approach that predicts bounding box

Fig. 1 Comparison of single-

stage anchors and SS outputs.

b Grid over 16 subsampling

ratio
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co-ordinates and class probabilities straight from image

pixels or FMs. It is fast (45 FPS); however, it still lags

behinds in accuracy as compared to state-of-the-art detec-

tion systems. For better performance by keeping fastest

property, another version of YOLO—YOLOv2 [14] was

proposed by J. Redmon et al. with deeper network. For

variants scale objects, another set of approaches [15–18]

used different layers within a ConvNet to predict fast and

more accurately. Using single shot multibox detector

(SSD) [15] is one of those approaches. It used default

boxes of different aspect ratios to scales on multiple scale

layers. It is deeper and faster—59 FPS. A deeply super-

vised object detector (DSOD) [16] was also built upon the

SSD framework, which produces a simple and efficient

model for object detector from scratch. The multi scale-

CNN (MS-CNN) [17] and deconvolutional single shot

detector (DSSD) [18] apply the concepts of deconvolution

on multiple scale layers in the ConvNet to increase the

resolution of FMs before using the layers to learn region

proposals and object detection.

3 Brief description of the TU-VDN dataset
with newly generated bounding box
ground truth

The existing well-known object detection datasets, such as

PASCAL VOC [29], MS COCO [30], and ImageNet VID

[31], consist of challenges, such as realistic scenes, which

gather images of complex everyday scenes, movement

type, level of video clutter, and so on. Thus, it is difficult to

evaluate the robustness of an object detection method

under atmospheric conditions because aerosols reduce the

visibility of targets in a scene. Therefore, we designed a

standard night-vision video dataset, which is based on

several atmospheric-weather-degraded conditions and

covers many real-world scenarios. The dataset video

recording conditions, dataset information, key features,

ground truth annotation (binary mask based) details, and

related key features of the designed dataset are discussed in

our articles [6, 7]. These articles are based on moving

object segmentation, where ground truth annotations are

purposely generated for foreground object detection, i.e.,

binary mask generation. In this study, we have generated a

bounding box-based ground truth generation for object

detection. The TU-VDN dataset provides a realistic diverse

set of outdoor videos in night vision that consists of 60

video sequences under various atmospheric conditions.

Each video clip was two minutes in duration, the number of

frames per videos was 2500, and the total number of frames

was 138,230.

3.1 Bounding box ground truth generation
of salient objects on the created dataset

Ground truth generation of salient objects allow under-

standing the efficiency of object detection algorithms. The

manual fixations of salient objects in the form of bounding

box indicate its identity and provide detailed spatial and

temporal information. To implement the protocol, each

laboratory member is asked to free-view all the extracted

frames of the video clips distributed to them and to fix the

two co-ordinate points of the salient objects in one anno-

tating frame per five frames using the ‘‘LabelImg’’ graph-

ical image annotation tool. Most left corners (Xmin, Ymin)

and lower-most right corners (Xmax, Ymax). Along with

bounding box information outlining the salient objects,

temporal information related to object class as presented in

the corresponding frames for each video clips of the cre-

ated dataset are also maintained in ‘‘.xml’’ file. We labelled

the objects present in the frames in 13 classes. The overall

statistics of the ground truth annotated frames are presented

in Table 1.

3.2 Data augmentation

In deep learning classification, a common problem is

adjusting the overfitting issue. There are several methods to

reduce overfitting in CNN models. The best option is to get

more training data because our TU-VDN dataset have only

22,030 ground truth frames, which is a comparatively small

dataset. The generation of more data through data aug-

mentation is more beneficial only for smaller datasets and

is capable of reducing overfitting issues. In this study, we

chose three data augmenting procedures; horizontal flip-

ping, HSV color space, and sequence. Horizontal flipping

(HF): An augmentation that horizontally flips the frame for

classification tasks is easiest. However, performing the

same augmentation for an object detection tasks also

requires updating the bounding box. Figure 2 shows the

changes of bounding boxes during random horizontal

flipping which flips a frame along with ground truth salient

objects with a probability of ‘‘p = 0.5’’. HSV Color Space:

we can usually get better information from a HSV color

space [39]. For instance, a frame sequence where thermal

temperature adjustment during the maiden appearance of a

moving object causes illumination type effects in the cur-

rent video frame [7]. Figure 3b shows a frame where the

temperature polarity changed by the maiden appearance of

a moving object (Truck). In the RGB color space, the

illumination-effected frame will have varied characteristics

than previous frame in a video sequence, as shown in

Fig. 2a, without illumination effected. In the HSV color

space, the ‘‘hue’’ component of both frames is more likely
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to be similar, thereby indicating that the primary color

should not change much. Therefore, using only the ‘‘hue’’

component makes the data less sensitive to temperature

polarity changes (illumination type effects). To character-

ize the HSV color space over temperature polarity changes

in thermal frames, we used entropy to measure the con-

tents, as shown in Fig. 4.

Sequence It is also defining a data augmentation that does

nothing of its own characteristics; however, a combination

of data augmentations can be applied in a sequence. The

main purpose of this sequence is to increase the number of

data and corresponding objects along with the advantages

of HF and HSV. We attempted to balance the number of

objects in each class using these three procedures through

several permutations with parameters. The total number of

annotated frames and objects after data augmentations are

presented in Table 1.

4 Problem definition

More of the thermal infrared radiation signal can be lost

along the way during traveling via adverse weather con-

ditions which produces a degraded image [7]. Detection of

accurate object under such degraded conditions is

promising by existing state-of-the-art CNN-based object

detection approaches [10, 11, 13, 15]. Therefore, we

investigated on a deep learning structure on this problem

before the beginning of detection strategies. The deep

learning approaches with deeper convolutional layers can

be restored of a degraded image [3, 4]. The receptive field

of each deeper layer plays a vital role to analyze local

features in such degraded images. The idea of receptive

field in shallow layers is to extract local features and then

combine them to make more complex and concentrate

patterns in deeper layers. Consider that we are extracting

just one feature per convolution layer, as shown in Fig. 5.

The convolution layers are FM0 (intensity-based input

image region or feature map (FM)), FM1 (first output FM),

FM2 (second output FM) with stride of 1 and convolutional

kernel size 3 9 3. The receptive field of an image region in

a convolution layer would be the cross section of the pre-

vious layers with kernels. Thus, the receptive field at

coordinate (0, 0) of first FM (FM1(0,0)) is the cross section

of local region square FM0(0:2, 0:2) over 3 9 3 convolu-

tion kernel 1 (K1). The receptive field of FM2(0,0) will be

crossed of FM1(0:2, 0:2) which itself receives inputs from

FM0(0:4, 0:4). Therefore, we have stacked 3 9 3 kernel in

two intermediate convolutional layers, which produces

results similar to that obtained using a single kernel of size

5 9 5. Consequently, three convolutional layers would

give us an effective size of 7 9 7 kernel and so on.
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Proposition The deeper convolutional layers produce

better quality of restorated image.

Proof As shown in Fig. 5, the add up of convolutional

FMs with original images will result in restorated images

RI1 and RI2, where the value (v) of pixels in deeper FMs

are lesser than shallow layers as follows:

v dFM0 x; yð Þ
� �

[ v FM1 x; yð Þð Þ[ v FM2 x; yð Þð Þ ð1Þ

where dFM0 is a normalized image region, i.e., pixel values

between 0 and 1.

Equation (1) holds the conditions because convolution

on a receptive field over another receptive field will always

produce lesser resultant values into the output cells (in case

of a normalized image).

Considering quality measures from peak signal-to-noise

ratio (PSNR), Eq. (1) can be expressed as follows:

Fig. 2 Sample frames from TU-

VDN dataset along with

bounding box ground truths

Fig. 3 Sample thermal frames from TU-VDN dataset where temper-

ature adjustment causes illumination type effects. a A normal frame

sample, b temperature polarity changed next frame, c HSV space on

the normal frame sample, and d HSV space on the temperature

polarity changed next frame

Fig. 4 Characterization of thermal illumination affected frames from

the TU-VDN dataset through entropy value. The higher entropy

values of illumination effected thermal frames on the HSV color

space over RGB color space indicates an image with adequate details

of information in terms of better quality. In case of normal frames, the

differences between RGB and HSV color space entropy values are

lesser but higher than illumination effected frames
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ð2Þ

Equation (2) holds the mentioned condition (‘‘\’’) because

the mean square error (mse) is estimated based on differ-

ence between original and restoration FMs. The pixel

values of restoration FM over the deeper convolution lay-

ers will result in lesser than shallow convolution layers, as

expressed in Eq. (1), i.e., v(FM1(x,y))[ v(FM2(x,y)).

Therefore, the mse value of first convolutional layer-based

restoration FM will be lesser than second convolutional

layer-based restoration FM, and correspondingly logarithm

value of first convolutional layer-based restoration FM will

be lesser than second restoration FM. For example, the

value of mse1 between FM0 and FM1 is 0.4 and the value of

mse2 between FM0 and FM2 is 0.5 (the pixel values will be

in between 0 and 1, and convolutional operation will also

resultant lesser than 1 because the original image is nor-

malized) in Eq. (2) as follows:

log10 0:4ð Þ\ log10 0:5ð Þ
) �0:397\� 0:301

) PSNR1\PSNR2

ð3Þ

From Eq. (3), we can say that the deeper convolutional

layer will produces better quality of an image.

5 Proposed architecture

In this section, the proposed AWRDNet will be presented,

as shown in Fig. 6. The AWRDNet approach consists of

three portions. (Sect. 5.1) The first portion is based on a

feed-forward convolutional network that produces better

restorated images through deeper convolutional layers. We

generalize AWRDNet architecture PART-A for restoration

of degraded images before object detect task (Sect. 5.1.1).

(Sect. 5.2) The second portion generates a fixed-size col-

lection of pre-defined anchors on the de-convolutional FM

of deeper convolutional layers, and refinement of anchors.

(Sect. 5.3) Finally, for each object anchor, extracts a fixed-

length feature vector which is fed into a sequence of fully

connected layers that subdivided into two sibling output

layers: one that estimates SoftMax operation to produce

probabilities over ‘‘P ? 1’’ object classes where ‘‘plus 1’’

is for a background class, and another branch that produces

Fig. 5 Deeper convolutional layers for better restorated feature map
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4 (four) real valued bounding box position numbers for

each of the ‘‘P’’ object classes.

5.1 Deeper convolutional layers for restoration
of adverse atmospheric degraded thermal
frames

The atmosphere influences the visibility through aerosols;

the type of infrared camera that is used and the waveband

in which the camera operates are also important because of

the following reasons. (i) The particles size exceeds the

wavelength in the visible portion of the electromagnetic

spectrum (0.4 to 0.74 lm), attenuation by atmospheric

aerosols is independent of the wavelength. (ii) As the

wavelength increases, attenuation becomes less of an issue.

Wavelengths in the far-infrared region (5–14 lm) exceeds

those of other infrared wave bands (0.74–5 lm); thus,

impact of particles on far-infrared waves is relatively

insignificant. (iii) Far-infrared wavelength is higher than

other infrared wavebands; however, the particles size of

fog and rain much higher than far-infrared waveband

length, especially rain water droplet particles size

500–5000 lm where fog water droplet is only 0.5–80 lm
[33]. Therefore, the degradation of night images even in

thermal frames still there. In last one decay, numerous

numbers of deep learning approaches has been developed

for realistic scenes-based object detection; however, the

focus on adverse weather affected realistic real-world

scenes is still lacking. For restoration-based image FMs

generation, Fig. 6 shows a deep convolutional network

where initial convolutional layers under a BaseNet, Con-

volutional Block-1, Block-K, Block-N, and De-

Convolution.

Fig. 6 Schematic layout of the proposed AWRDNet architecture. Restorated FM is produced through N number of convolutional blocks, and

final FM prepared by deconvolution procedure for setting up pre-defined set of anchor boxes for object detection and labeling tasks
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First, the proposed network processes the whole frames

through 2 convolutional layers and 64 filters from VGG16

network as base network with pre-trained ImageNet and

produce a FM of 64 9 224 9 224 tensor. The rest of

convolutional layers contains under ‘‘N’’ number of deep

convolutional blocks, where each block consists of a con-

volution layer, batch normalization, activation function

followed by dropout. Our emphasis is on restoration of

degraded image through each block; thus, we have skipped

the pooling operation per block to avoid dimension

reduction in output FMs. We avoid the pooling operation

because it reduces the memory consumption and decreases

the resolution. Our main motive is generation of restorated

FM before beginning of object detection tasks; thus, the

convolution-AdaptivePooling operation also requires

deconvolution operation to increases the resolution of FMs

[18].

Atrous convolutional layer In this study, the atrous con-

volutional layer consists over ‘‘N’’ number of blocks.

The reason behind replacement of normal convolution

with atrous convolution is exponential expansion of

reception field which is support exponential expansion of

the receptive field without loss of resolution. It is applied to

input feature map (F:Z2 ? R be a feature map discrete

function) with definite gaps in the kernels [k:Xr ? R be a

kernel of size (2r ? 1)2]. Atrous convolution can be for-

mulated as [56]

F �a kð Þ ¼
X

i

X

aj

F ið Þk ajð Þ ð4Þ

where ‘a’ be a atrous factor. If atrous rate is 1, it means the

convolution kernel is normal, and if the atrous rate is 2,

then there is a skip of one pixel per input. Increasing the

stride reduces the dimension of the output. A 2 9 2 atrous

convolution has the same receptive field as a 3 9 3 un-

atrous convolution.

Finally atrous convolution is a mathematical operation

‘‘*,’’ namely, convolution that takes two inputs such as

image feature tensor of dimension ‘‘batch_-

size 9 d 9 height 9 width’’ and a kernel of dimension

‘‘d 9 kheight 9 kwidth’’. We use ‘‘d’’ kernels (d = 64 in our

case) of the size ‘‘d 9 2 9 2’’, where a kernel operates on

‘‘2 9 2’’ receptive field across ‘‘d’’ channels. The network

takes an interpolated degraded image of size

‘‘3 9 224 9 224’’ as input feature, and outputs will be

volume of dimension O = (O - F ? 2P)/S ? 1, where

‘‘O’’ (O = 224 in our case) is the input size, ‘‘F’’ (F = 2 in

our case) is the receptive field size, ‘‘P’’ (P = 1 in our case)

is the padding to fit receptive field perfectly to the input

image/FM, and ‘‘S’’ (S = 1 in our case) is the stride, i.e.,

number of pixels shifts over the input image/feature matrix.

The convolution of a degraded image with ‘‘d’’ number

of kernels can perform several random operations, which

are advantageous in decoding several undetectable salient

features. Figure 7 shows various convoluted images after

applying different types of d = 64 number kernels. In the

initial block = 1, we can see more clear scenes of a night

thermal foggy input image (as shows in Fig. 7) and few

output images of several kernels become a usual input or

darker than input. Further, the next intermediate block = K,

we can visualize more abstract clearer forms. The deeper

block = N that provide more and more concrete forms of a

degraded image.

Batch normalization To increase the stability and speedup

learning network, we normalize the convolution layer

through two trainable parameters shifting (c) and scaling

(b), which are learned during training along with the

original parameters of the network. Therefore, batch nor-

malization allows each layer of a network to learn by itself

a little bit more independently of other layers. It normalizes

the output of a previous convolution layer by subtracting

the mean (lb) of mini-batch b = {o1, o2, …, od; oi is a

channel output} and dividing by the batch standard devi-

ation (rb). Therefore, batch normalization can be expres-

sed as follows:

ôi ¼
oi � lB
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2B þ e
q ð5Þ

where

Fig. 7 Various convoluted images using 64 numbers of kernels over several deeper blocks
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lB ¼ 1

d

X
d

i¼1

oir
2
B ¼ 1

d

X
d

i¼1

oi � lBð Þ2

e ¼ e�05 constant to avoid complex value.

Batch normalization also reduces overfitting because it

has slight regularization effects. Therefore, scale and shift

the normalized batch to obtain the output of the layer as

follows:

oi ¼ cboi þ b ð6Þ

where c and b are the scaling and shifting factors,

respectively.

Non-linearity To introduce non-linearity in our system

without making a significance difference to the output of

normalized convolution, we used ReLU activation function

f(oi) = max(0, oi). The ReLU activation function does not

changes much of the normalized convolution outputs

except all the negative activations to 0, since the real-world

data would want our network to learn would be non-neg-

ative linear values.

Dropout Data normalization has slight regularization

effects that can reduce overfitting. Therefore, if we use

batch normalization, we should use less dropout (pr = 0.8

in our case), which is a worthy because it will not lose a lot

of information. However, we should not depend only on

batch normalization for regularization; we should better

use it together with dropout.

Skip-connection Now, the each convolutional block will be

gradually reconstruct the feature maps for restoration of

degraded maps through high level information. The feature

maps after each block concatenate via skip connection with

the corresponding feature maps from the previous block to

avoid losing pattern or spatial information. The concate-

nation can fuse the low and high level information of the

feature maps, and enhance the perception ability to

degraded feature maps.

In skip connection operation, the skip connection

explicitly concatenate the feature maps generated in pre-

vious block (Bk-i) with current block (Bk) feature maps.

Let ¤Bk�i

Bk
be concatenate layer. The convolutional (normal

or atrous) feature map {
Bk�1

in the preceding layer is up-

sampled by a scale factor us where us = 1 which will keep

the same dimension (as our model having same dimensions

over the blocks) of the (k - 1)th block by a factor of 1 and

concatenate it with an previous block convolutional feature

layer CBk�i where i be the number of skipped layers from

the concatenate layer. It can be formulated as

¤Bk�i

Bk
¼ {

Bk�1 � us � CBk�i ð7Þ

After concatenation we reduce the channel numbers again

to 64 from 128.

Consequently, each block will consist of convolution,

batch normalization, non-linearity, and dropout operations.

The deeper ConvNet block will use, the better restoration

image can get back. In the study, we are using N = 10

number of blocks. For the restoration image, once image/

FM details are predicted in each block, they are added back

to the input degraded image to provide the restoration

image, as shown in Fig. 6. We have analyzed the quality of

these restoration images, as shown in Fig. 8. We have seen

that after each convolution block, it produces better PSNR

values, thereby indicating that the deeper convolutional

layers produce better restoration images, which also proved

in Proposition.

After Block N of size 64 9 224 9 224, we have used

adaptive max pooling of desire output size of

64 9 320 9 240. The adaptive output FM again max

unpooled to 64 9 640 9 480 as original dataset frames

size to clipping pre-defined anchor boxes or ground truth

bounding boxes.

5.1.1 Formulation of a sub-architecture for restoration

Figure 9 shows a separate sub-architecture to evaluate the

restoration work on Part-A from proposed AWRDNet

model. The upscaled de-convoluted layer first reduce a

number of channels as desire size (I0480�640�3) to estimate

error. Our goal is to recover an image I0 which is as pos-

sible clear and concrete visible image. Since our capture

original images are by-default degraded, there is no refer-

ence images to take as ground-truth for loss estimation.

Therefore, we applies a trick here: restorated image I0i on

first iteration (a.k.a. previous) used as reference image and

restorated image I0j on second iteration (a.k.a. next) used as

current image to calculate loss function. Then, all the filters

weights and biases are to be optimized via Adam approach.

Loss function The main purpose of image reconstruction is

not only to improve enhance visibility, also enhance edge-

texture information, maintain color-structure of the image.

In order to evaluate this method, PSNR is used and mean

square error (MSE) for the loss function as

L ¼ 1

N

X
N

i¼1

I0i � I0j¼iþ1

�

�

�

�

�

�

2

ð8Þ

where N is the number of training samples, I0i represents the
reconstructed image which is used as reference image, and

I0j denotes the reconstructed image on next iteration. The

loss is minimized via Adam optimizer with the standard

back propagation.
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Using MSE as the loss function courtesies a high PSNR

which is a widely used metric for evaluating reconstruction

quality. The overall performance evaluation over different

weather conditions is studied in Sect. 6.1. To provide a

better visual understanding of the reconstruction images,

typical results are shown in Fig. 10 under various atmo-

spheric conditions.

5.2 Anchor boxes generation

We associate a set of different scales and aspect ratios to

restoration based last de-convolution FM in Fig. 6. The FM

is sub-sampled of 16 pixels which pooled our FM from

640 9 480 pixels to 60 9 40 pixels size. Now every pixel

in the feature cells is 16 9 16 pixels along the x and y

axes. At center of each feature cell, we will use anchor

scales of (2, 4, 8) and aspect ratios of (0.5, 1, 2) to generate

9 anchor boxes width and height as follows:

anchor width ¼ sub sample� anchor scale �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=aspect ratio

q

anchor height ¼ sub sample� anchor scale �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aspect ratio
p

(

ð9Þ

The aspect ratio values 0.5 and 2 in Eq. 9 indicate gener-

alization of the horizontal and vertical anchor boxes with

corresponding width and height. The horizontal anchor box

will especially for vehicle type objects, and the vertical

anchor box will for pedestrian type objects. The aspect

ratio value of 1 will generate a square anchor box, which is

suitable for objects with square shape positions. For

example, human in sitting position or tiny animals like dog,

cat. Therefore, anchor boxes will have shape of (9, 4) with

four coordinate points at each cell of the FM:

xmin ¼ xcenter � anchor width=2ymin ¼ ycenter � anchor height=2
xmax ¼ xcenter þ anchor width=2ymax ¼ ycenter þ anchor height=2

�

ð10Þ

The attractiveness of existing anchor-based approaches is

that they addressing multiple scales of ‘‘image or feature

pyramids’’ and ‘‘pyramid of filters’’ [10, 20, 24, 34] or use

of default boxes on multi scales of FM [15]. At shallow

FMs, the default anchor boxes for small objects detection;

at deeper FMs, the default anchor boxes for larger objects

detection. These approaches are often useful but time

consuming.

We are working only on a deeper restoration based de-

convolutional FM; thus, the concept of multi scales anchor

box generation over multi scale FMs is missing [15]. To

capture the small or far objects and large or near objects,

we are using another two set of different scale sets (3, 6,

12) and (4, 8, 16) with same aspect ratios, i.e., (0.5, 1, 2).

The property of the proposed net based anchor boxes

generation is translation invariant [11]. If we combine all

three sets of multi scales, it will be 3 9 7 = 21 anchor

boxes (3 aspect ratios 9 7 multi scales after remove

duplicates) per cell and total of 60 9 40 9 21 = 50,400

anchor boxes over 640 9 480 resolution FM with 16 sub-

sampling. Generation of this anchor boxes approach is

similar to the anchor boxes used in [11, 15]. However, we

will find the index of all valid anchor boxes ‘‘ab’’ by

applying conditions that should be followed as ab(:,xmin)-

C 0, ab(:,ymin) C 0, ab(:,xmax) B 640, and ab(:,ymax)-

B 480 where ‘‘:’’ indicates all anchor boxes together.

Anchor boxes refinement Based on the ground truth

boxes, the bounding box regression from an anchor box to

a nearby ground truth ‘‘gt’’ box parameterizations of the

four coordinates as follows [9]:

dx ¼ gt xcenter � ab xcenterð Þ=anchor width

dy ¼ gt ycenter � ab ycenterð Þ=anchor height
dw ¼ log gt width=anchor widthð Þ
dh ¼ log gt height=anchor heightð Þ

8

>

<

>

:

ð11Þ

and the target boxes ‘‘tb’’ for loss estimation after each

epoch will be

Fig. 8 Analysis of restorated

images using peak-signal-to-

noise (PSNR) over

convolutional blocks in our

AWRDNet network
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tb ¼ dx; dy; dw; dh½ � ð12Þ

For each valid anchor box, the estimation of intersec-

tion-over-union (IoU) with each ground-truth object will be

A IoUð Þ ¼ X2� X1ð Þ � Y2� Y1ð Þ if

X1\X2& Y1\Y2
ð13Þ

where X1 ¼ max gt :; xminð Þ; ab :; xminð Þð Þ;X2 ¼
min gt :; xmaxð Þ; ab :; xmaxð Þð Þ; Y1 ¼ max gt :; yminð Þ;ð
ab :; yminð ÞÞ;Y2 ¼ min gt :; xmaxð Þ; ab :; xmaxð Þð Þ; ‘A’ indi-

cates area under a box.

Therefore, the final areas for anchor boxes and bounding

box ground truth objects are as follows:

IoU ab; gtð Þ ¼ A IoUð Þ
A abð Þ � A gtð Þð Þ ð14Þ

where

A abð Þ ¼ ab :; xmaxð Þ � ab :; xminð Þf g � ab :; ymaxð Þ � ab :; yminð Þf g
A gtð Þ ¼ gt :; xmaxð Þ � gt :; xminð Þf g � gt :; ymaxð Þ � gt :; yminð Þf g

We need to find the highest IoU (max_IoU) and index

(max_idx) for each anchor boxes to its corresponding

ground truth. Assignment of labels—index to all the rela-

tive anchor boxes ‘‘rab’’ (box coordinates range between 0

and 1) or target boxes to a list of region of interest those

will have maximum IoU greater than positive threshold

(pos_t = 0.4, neg_t = 0.1 in our case) as follows:

RoI ¼ RoIþ rab
tRoI ¼ tRoIþ tb
pos idx ¼ pos idxþ length RoIð Þ
labels ¼ labels þ gt class max idx½ �

8

>

>

<

>

>

:

if

max IoU� pos tð Þ

ð15Þ

where RoI, tRoI, pos_idx, neg_idx, labels initially an

empty list.

RoI ¼ RoIþ rab
tRoI ¼ tRoIþ tb
neg idx ¼ neg idxþ length RoIð Þ
labels ¼ labels þ 0

8

>

>

<

>

>

:

if

ðneg t\max IoU\pos tÞ

ð16Þ

Clipping anchor boxes to de-convolutional FM Clip the

anchor boxes to de-convolution FM of size W = 640 and

H = 480 as follows:

xmin ¼ rab : xminð Þ �W
xmax ¼ rab : xmaxð Þ �W
ymin ¼ rab : yminð Þ � H
ymax ¼ rab : ymaxð Þ � H

8

>

<

>

:

ð17Þ

Fig. 9 Schematic flow diagram for restoration images. I0i : first (previous) iteration reconstructed image where i = 1, 2, 3, … I0j : second (next)

iteration reconstructed image where j = 2, 3, 4, … L is the loss function

Fig. 10 Typical reconstruction results over various atmospheric conditions in our created night time dataset
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The clipped anchor boxes to de-convolutional FM have

different sizes, from where we can quickly get a list of

corresponding anchor boxes with a fixed size. To this

purpose, anchor pooling layer uses adaptive max pooling to

transform the features inside any valid anchor box into a

small FM with a fixed size of 14 9 14. This adaptive max

pooling operation is applied for each anchor box to each

channel (d = 64 in our case) of FM which is a good

pyramid of resized boxes for each anchor box.

5.3 Classification and regression

As shown in Fig. 6, the resized anchor boxes then mapped

to corresponding feature vectors, those are going through

four fully connected layers (FCs). The first two FC layers

goes through ReLU activation and dropout with pr = 0.5

and reducing feature vector dimension of 12,544 to 6272

and 6272 to 3136, respectively. The third FC branch out to

a classification head and a regression head. The classifi-

cation head operated over fourth FC followed by SoftMax

to produces output class confidence scores. The confidence

scores for ‘‘P = 14’’ object categories as C = {c1, c2, …,

cp}. The regression head produces 14 9 4 = 56 offsets per

class regressed bounding box (bbox). Finally, the loss value

will be estimated of sums up the cost of classification head

and bounding box regression head as follows:

Loss ¼ CrossEntropyLoss labels,Cð Þ þ SmoothL1Loss tRoIþ bboxð Þ

¼ � 1

@
X
@

i¼1

labelsi � log cið Þ

þ k
@
X
@

i¼1

X

j2ðxmin;ymin;xmax;ymaxÞ
Lsmooth
1 smoothij � tRoIij

� �

ð18Þ

where @: total number of anchor boxes entered in FC layers

as input feature vectors; k: a balancing parameter, k ¼ 1 so

that both classification and regression terms are roughly

equally weighted.

5.4 Training and testing parameters

We pre-trained the proposed model over the VGG16 net-

work as base network on the ImageNet multiclass com-

petition dataset [31]. For pre-training, only two

convolutional layers have used to reduce the large dimen-

sional original frames to a VGG16 based small dimension

(224 9 224) for learning speedup and less memory con-

sumption. We trained the proposed network model for

about a week for about 500 epochs on the training and

validation datasets from TU-VDN. Throughout training, a

batch size of eight was used, and the schedule learning rate

slowly raises from 1e-4 to 1e-2 in the following order:

1e-4 for first 200 epochs, 1e-3 for next 200 epochs, and

finally 1e-2 for 100 epochs. If we start at a high learning

rate our network model often diverges due to

unstable gradients.

We cannot use ground truth bounding boxes during

testing; thus, the non-maximum suppression (NMS) over

the proposed model produces bounding boxes with IoU

threshold and confidence score threshold. The generated

bounding boxes are highly overlapped with each other

which can reduce the redundancy based on their threshold

parameters.

6 Experimental evaluations and discussions

This section is divided into three subsections. First: we

investigate the qualitative evaluation of restoration images,

Second: we analyze the performance of the proposed net-

work model, namely, AWRDNet over our night thermal

dataset, namely, TU-VDN, which consists of four atmo-

spheric conditions (low-light, dust, rain, and fog); those are

realistic scenarios that are typically encountered in prac-

tice. We fine-tune the resulting proposed model using the

‘‘Adam’’ optimizer. Third: we compare and analyze the

different proposal or anchor generation approaches to our

proposed model on the TU-VDN dataset. Fourth: on this

dataset, we compare the proposed network model against

existing state-of-the-art twostage approaches such as fast-

RCNN [10], faster-RCNN [11], G-RCNN [56], and single-

stage approaches such as YOLO [13], YOLOv4 [55],

YOLOR [54], SSD [15]. In Sect. 6.2, assessment of the

proposed model using a widely popular realistic scene-

based object detection dataset: PASCAL VOC [29] is done.

The results are reported with respect to performance met-

rics: ‘‘mAP’’ to describe the detection accuracy, and a

graphical interpretation based ‘‘recall-precision’’ graph. In

last part (Sect. 6.3), evaluation and comparative assess-

ment has conducted on ZUT [57] thermal dataset using F1-

measure.

6.1 Evaluation on the TU-VDN dataset
over newly created bounding box ground
truth samples

The models are trained on TU-VDN augmented dataset, as

presented in Table 1, with total of 144,121 ground truth

frames and 274,889 number of ground truth objects under

13 object categories. The whole dataset divided into two

sets: one set consists of 80% of total data for training and

another set consists of 20% of total data for testing. As well

as, the training set sub-divided into 80–20% train-valida-

tion from training set data.

Neural Computing and Applications (2023) 35:12729–12750 12741

123



Qualitative evaluation of restorated images The TU-VDN

degraded images over adverse weather conditions have

been utilized to evaluate the performances of restoration

methods. As shows in Fig. 11, the proposed AWRDNet_-

PART-A yields the competitive average of PSNR values as

compare to the state-of-the-art techniques. The state-of-the-

art techniques used in this experiment along with our

proposed model are sparse-coding based method (SC) [41],

anchored neighbourhood regression (ANR) [42], super-

resolution CNN (SRCNN) [43], graph convolutional net-

work (GCN) [44], recurrent squeeze-and-excitation context

aggregation net (RESCAN) [45], progressive recurrent

network (PreNet) [46], spatial attentive network (SPANet)

[47], and deep residual convolutional dehazing network

(DRCDN) [48].

The average performance achieved by our proposed

model are 39.15 dB (under low light condition), 39.08 dB

(under rainy condition), 37.23 dB (under dusty condition),

and 36.97 dB (under foggy condition), respectively. From

weather point of view, the proposed model shows highest

performance in low light condition followed by rainy

condition. From the comparison with state-of-the-art

methods, we have noticed that low light and rain conditions

having good results over all methods than dust and fog

conditions. The GCN (38.85 dB), RESCAN (39.10 dB),

SPANet (38.19 dB), and PreNet (38.70 dB) giving higher

performances than our model (38.08 dB). The reason

behind these methods specially designed for de-raining

challenges. Other than this, our model outperform than

state-of-the-art methods at rest of conditions.

Analysis of the performance of AWRDNet model over dif-

ferent adverse conditions To demonstrate our contributions

via analysis of our dataset using the proposed model, we

present the performance evaluation in Fig. 12 in terms of

detection evaluation recall-precision graph. To investigate

the behavior of AWRDNet as a proposed model, we con-

ducted several ablation studies, such as detection over

single object data under adverse atmospheric conditions (as

shown in Fig. 12a), detection over double objects data (as

shown in Fig. 12b), and detection over multiple objects

data (as shown in Fig. 12c). During testing on these abla-

tion studies, we kept positive IoU threshold is 0.3 and

negative IoU threshold in between 0.1 and 0.3, non-maxi-

mum suppression (NMS) IoU threshold is 0.6 along with

confidence score threshold 0.6. On the single or double

objects data, our model has maximum mAP & 77% or

& 78% over low-light condition, and reduces in detection

accuracy to & 72% on multi-objects data scenes. Con-

sidering the atmospheric conditions, the low-light or rainy

conditions are promising than dust or foggy conditions.

The low-light giving the highest mAP in all types of

ablation object data because as we know low-light is not an

atmospheric condition, just included to analyze dark scenes

under thermal camera. Besides that, under rainy condition,

we realize the second highest detection accuracy values

because as the aerosols size increases (the radius of the rain

droplet is in the order of microns), less scattering is

observed. Therefore, there is less loss of contrast, which

reduces the false-negative analysis under convolutional

layers. Whereas foggy and dust conditions loss more of

contrast due to the dense of particles which affects in

detection accuracy.

Analysis of anchor generation approaches over AWRDNet

model To compare the single-stage based anchor genera-

tion approach and two-stage based proposal approach, we

emulate these approaches by our AWRDNet model.

Table 2 shows AWRDNet results when train and test using

various region proposal or anchor approaches. For selective

search (SS), we analyze about 300, 1 k, 2 k proposals,

respectively, over two proposals refinement strategies, i.e.,

(I) proposal positive index if IoU C 0.5 and negative index

if 01 B IoU\ 0.5, (II) proposals positive index if IoU

C 0.3 and negative index if 0.1 B IoU\ 0.3. We investi-

gated that the training using higher number proposals

showing promising results. SS has a mAP of 0.55 under

low-light followed by rainy condition 0.53; 0.52 for foggy

and 0.51 for dust while using 2 k proposals and refinement

strategy (I) which leading from refinement strategy (II). A

same scenario has highlighted in other proposals numbers,

i.e., 300 proposals and 1 k proposals. Till then we can also

sense that these mAP values are not up to the promising

detection accuracy. The reason might be the SS cannot

merge up the super-pixels over smooth thermal frames as

discussed in Fig. 1. Therefore, we investigated the single-

stage-based approach, i.e., generation of pre-defined anchor

boxes over feature cells [11, 15]. By default, we use three

sets of three scales and three aspect ratios, i.e., Set1—(2, 4,

8) scales and (0.5, 1, 2) aspect ratios, Set2—(3, 6, 12)

scales and (0.5, 1, 2) aspect ratios, Set3—(4, 8, 16) scales

and (0.5, 1, 2) aspect ratios. The mAPs are approximately

equal in Set1 and Set2, and the mAPs are drops by a con-

siderable margin of 1–3% in Set3. The Set3 generating

anchor boxes perhaps larger than our ground truth bound-

ing boxes. When we merged up these 3 sets into one, i.e.,

Set4 is (2, 3, 4, 6, 8, 12, 16) scales and (0.5, 1, 2) aspect

ratios, we are getting the highest mAP of 0.79 in both

atmospheric conditions, i.e., low-light and rain, and mAP

of 0.75 in rest two atmospheric conditions, i.e., dust and

foggy. Therefore, the upcoming analysis in this study will

be based on Set4 anchor boxes.

Comparative Analysis of our AWRDNet model with other

existing state-of-the-art models On the whole TU-VDN

dataset, we compare AWRDNet against YOLOR [53], fast-

RCNN [10], faster-RCNN [11], YOLO [13], YOLOv4
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[54], G-RCNN [55], and SSD [15]. The proposed model

including SSD300, Fast and Faster RCNN are fine-tuned on

the pre-trained VGG16 network where YOLO is based on

GoogleNet and You Only Learn One Representation

(YOLOR) base-net is YOLOv4. The YOLOv4 pre-trained

with CSPDarknet53 and Granulated-RCNN (G-RCNN) is a

family of FastRCNN which is pre-trained with AlexNet as

base network. The AWRDNet detection is analyses via pre-

defined anchor box approach as well as SS box approach,

and SS producing very poor results in all our ablation

cases. Whereas the rest of existing state-of-the-art models

such as YOLO, YOLOv4, YOLOR, SSD which are ana-

lyzed via default anchor box strategies, faster-RCNN via

RPN box, G-RCNN via bounding box, and fast-RCNN via

SS strategy.

We designed 4 ablation cases to evaluate more closely

as shown in Fig. 13. In case 1 (Fig. 13a), we kept NMS

thresholds as IoU is 0.6 and confidence score is 0.6. Our

network model realizes an approximately 0.63% deterio-

ration mAP over the best-performing model, namely,

YOLOR; although fast-RCNN and AWRDNet with SS

yields the poorest results. In case 2 (Fig. 13b), the sup-

pression thresholds set as IoU is 0.6 and confidence score is

0.3 giving maximum detection accuracy of approx. 79.23%

than rest of ablation cases. Whereas YOLOR and YOLOv4

exhibits as second and third best performing models with

& 79% and & 78%, respectively. For the two-stage

approach models, the faster-RCNN showing promising

results with & 73% mAP. As usual, fast-RCNN and

AWRDNet with SS yields the poorest outcomes. The IoU

and confidence score thresholds of NMS are sets 0.3 and

0.6, respectively, during the testing phase in case 3

(Fig. 13c). The proposed model and state-of-the-art models

exhibit satisfactory performances, whereas YOLOR,

G-RCNN, and YOLOv4 becoming as second, third, and

fourth satisfactory models than AWRDNet which has the

highest mAP of 67.23%. Most of worst performances has

analyzed when we set threshold values of IoU is 0.3 and

score is 0.3 in case 4 (Fig. 13d). That might be because of

greater number of redundant, unwanted pre-defined

bounding boxes as threshold values are low and tried to

Fig. 11 Performance and comparative evaluation of restoration part of proposed model via PSNR. The state-of-the-art models are SC [41], ANR

[42], SRCNN [43], GCN [44], RESCAN [45], PreNet [46], SPANet [47], and DRCDN [48]

Fig. 12 Recall versus precision mean average precision (mAP) analysis on the TU-VDN dataset. During analysis, positive IoU threshold

(pos_t = 0.3) and negative IoU threshold (0.1 B neg_t\ 0.3), NMS IoU threshold is 0.6 along with confidence score threshold is 0.6
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match the number of resultant boxes with ground truth

boxes.

To provide a better visual understanding of the detection

results, typical bounding box-based detection results are

shown in Fig. 14 under various atmospheric conditions.

6.2 Evaluation on the PASCAL VOC dataset

We comprehensively evaluate our proposed network model

on the PASCAL VOC 2007 and 2012 detection benchmark

datasets [29]. The results obtained using the PASCAL

VOC dataset are presented in Table 3, i.e., the detection

accuracy over several two-stage and single-stage object

detector methods, and their corresponding extension ver-

sion over the years. We used the initial learning rate of

1e-4 for the first 100 training epochs, then used the

learning rate of 1e-3 for the next 50 epochs, and then 1e-2

for another 50 epochs.

Results on VOC 2007 Referring to Table 3, our AWRDNet

achieves 82.6% mAP for train set ‘‘07’’and 82.8% mAP for

train set ‘‘07?12’’ surpassing all methods. Our method

outperforms fast-RCNN by 15.7% (82.6 vs. 66.9) for ‘‘07’’

and 12.8% (82.8 vs. 70.0) for ‘‘07?12’’, and faster-RCNN

further reduces mAP differences by 12.7% (82.6 vs. 69.9)

for ‘‘07’’ and 9.6% (82.8 vs. 73.2) for ‘‘07?12’’. In con-

trast, the earlier regions-based family network, i.e., RCNN

along with the bounding box proposals (BB) produce lesser

results than AWRDNet by the differences of 16.6% (82.6

vs. 66.0) for ‘‘07’’ when the base network is OxfordNet and

24.1% (82.6 vs. 58.5) for ‘‘07’’ when the base network is

TorontoNet. The SPP BB makes it 23.4% for ‘‘07’’ with

base network ZF5. Almost closer difference produces with

our model through HyperNet and HyperNet speedup ver-

sion (SP), i.e., 6.3% (82.6 vs. 76.3) for ‘‘07’’ and 7.8%

(82.6 vs. 74.8) for ‘‘07’’, respectively. The OHEM method

makes it 12.7% (82.6 vs. 69.9) for ‘‘07’’ and 8.2% (82.8 vs.

74.6) for ‘‘07?12’’ with base network VGG16. All the

mentioned existing methods are two-stage network built.

The method D_SCNet-127 is only showing most promising

performance even than our proposed model with 88.9%

accuracy for ‘‘07’’ test set and 83.8% accuracy for ‘‘12’’

test set.

In single-stage based methods, YOLO with base net-

work GoogleNet achieved 63.4% mAP and 66.4% mAP

with VGG16 as base network for train set ‘‘07?12,’’ and

achieved most higher mAP, i.e., 78.6% to its next version

YOLOv2 with DarkNet19 base network which is compet-

itive to our proposed model. For 300 9 300 input size,

SSD300 obtains 68% mAP for ‘‘07’’ train set and 74.3%

mAP for ‘‘07?12’’ train set. For 512 9 512 input size,

SSD512 obtains 71.6% detection accuracy for ‘‘07’’ train

set and 76.8% detection accuracy for ‘‘07?12’’ train set.

Trained with ‘‘07?12’’ set over base network ResNet-101,

the SSD with 321 9 321 input size gets 77.1% mAP, and

80.6% mAP with 513 9 513 input size which almost

similar accuracy with our proposed method having only

1.8% difference (82.8 vs. 80.6). The deconvolution version

Table 2 Comparison in terms of region proposals, and pre-defined anchor box approaches in AWRDN model on the TU-VDN dataset

Stages Methods Frame and

sub-sample

size

Anchor

aspect

ratios

Anchor

scales

#Proposals/

anchors

Proposals/anchors

offset refinement

strategies

mAP

Low

light

Rain Dust Fog

Two-

stage

AWRDNet ? SS Frames size:

640 9 480

– – 300 (I) 0.46 0.45 0.43 0.43

(II) 0.43 0.44 0.41 0.42

1000 (I) 0.48 0.48 0.47 0.46

(II) 0.45 0.46 0.44 0.44

2000 (I) 0.55 0.53 0.51 0.52

(II) 0.52 0.51 0.47 0.48

Single-

stage

AWRDNet ? Anchor Frames/FM

size:

640 9 480

{0.5,

1, 2}

Set1 = {2, 4,

8}

3 9 3 9 40 9 30

= 10,800

(I) 0.77 0.76 0.75 0.75

(II) 0.71 0.70 0.66 0.66

Set2 = {3, 6,

12}

3 9 3 9 40 9 30

= 10,800

(I) 0.76 0.76 0.74 0.73

(II) 0.71 0.71 0.66 0.65

Sub sample:

16

Set3 = {4, 8,

16}

3 9 3 9 40 9 30

= 10,800

(I) 0.74 0.75 0.73 0.73

(II) 0.67 0.68 0.65 0.64

FM cells:

40 9 30

Set4 = {2, 3,

4, 6, 8, 12,

16}

3 9 7 9 40 9 30

= 25,200

(I) 0.79 0.79 0.75 0.75

(II) 0.73 0.73 0.70 0.71

Bold fonts indicating our proposed model best performances

(I) POS INDEX IF IoU C 0.5, NEG INDEX IF 0.1 B IoU\ 0.5; (II) POS INDEX IF IoU C 0.3, NEG INDEX IF 0.1 B IoU\ 0.3
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Fig. 13 Analysis of CNN models via recall versus precision graph in the whole TU-VDN dataset via NMS thresholds
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Fig. 14 Typical detection results of various atmospheric conditions in

our created night time dataset. Column (1) shows detection results

under rainy condition, column (2) shows detection results under low

light condition, column (3) shows detection results under dusty

condition, column (4) shows detection results under foggy condition,

column (5) shows a randomly selected some worst results
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of SSD on 321 input size, i.e., DSSD321 achieved com-

petitive accuracy of 78.6% on ‘‘07?12’’ train set where

ResNet-101 was used as base network. Input size of

513 9 513 on train set ‘‘07?12’’ gets successful detection

accuracy of 81.5% which very close to our proposed

method accuracy, i.e., 82.8% mAP. In case of deeply

supervised method—DSOS and fully convolutional

framework—RON achieved competitive detection accu-

racy against AWRDNet of 77.7% and 77.6%, respectively.

A recent work, namely, Deep RegionletsA and Deep

RegionletsP versions achieved good amount of accuracy of

80.1% and 80.3%, respectively, for ‘‘07?12’’ set.

Results on VOC 2012 In case of VOC 2012 dataset, our

AWRDNet achieves 81.8% mAP for train set ‘‘07?12’’

and 81.4% mAP for train set ‘‘07??12’’ surpassing all

methods except D_SCNet-127 (83.8%). When compared to

fast-RCNN, our method outperforms it by 13.0% (81.4 vs.

68.4) for ‘‘07??12,’’ and faster-RCNN further reduces

mAP differences by 11.0% (81.4 vs. 70.4). Our model

makes analogous differences with HyperNet and HyperNet

speedup version (SP), i.e., 10.4% (81.8 vs. 71.4) and 10.5%

(81.8 vs. 71.3) for ‘‘07?12’’, respectively. The OHEM

method also makes it 9.5% (81.4 vs. 71.9) for ‘‘07??12’’

with base network VGG16.

In the single-stage based methods, YOLO with base

network GoogleNet achieved 57.9% mAP for train set

‘‘07?12,’’ and achieved higher mAP, i.e., 73.4% to its next

version YOLOv2 with DarkNet19 base network for

‘‘07??12’’. For 300 9 300 input size, SSD300 obtains

72.4% mAP for ‘‘07??12’’ train set and 74.9% mAP for

512 9 512 input size—SSD512. Trained with base net-

work ResNet-101, the SSD with 321 9 321 input size gets

75.4% mAP, and 79.4% mAP with 513 9 513 input size

for ‘‘07??12’’ train set. The deconvolution version of SSD

on 321 input size, i.e., DSSD321 achieved accuracy of

76.3% on ‘‘07??12’’ train set where ResNet-101 was used

as base network. Input size of 513 9 513 on train set

‘‘07??12’’ gets successful detection accuracy of 80%

which almost similar accuracy with our proposed method

having only 1.4% difference (81.4 vs. 80.0). In case of

deeply supervised method—DSOS and fully convolutional

framework—RON achieved comparable detection accu-

racy against AWRDNet of 76.3% and 75.4%, respectively,

for ‘‘07??12’’ train set.

6.3 Comparative assessment on the ZUT dataset

A very few datasets have been published for detection of

objects in adverse weather conditions over the decades.

Since our current study is on thermal dataset, we have

chosen another publicly available thermal dataset, namely,

ZUT [57] as having the extensive variety of captured data

in the four European Union countries such as Denmark,

Germany, Poland, and Lithuania. The dataset captured

during severe weather conditions like drizzle, rain, cloudy,

frost, fog, and clear sky. ZUT dataset that contains 122 k

annotations collected during the drizzle or the rain, only

752 annotations were perceived during the clear sky, and

the remaining annotations were collected during frosty and

cloudy conditions [57]. The ZUT dataset is publicly

accessible at Github and IEEE Dataport.

The comparative assessments results are shown in

Table 4. The methods are used same as Sect. 6.1.3, i.e.,

Fast-RCNN, Faster-RCNN, G-RCNN, SSD, YOLO,

YOLOv4, YOLOR, and ours (AWRDNet). From the sev-

ere weather conditions point of view, the YOLOR model

shows as best performing with 0.69% F-score for drizzle

weather condition where YOLOv4 and AWRDNet as

second best. In case of rainy condition, the AWRDNet

model shows promising with 0.70% whereas 0.68% for

both YOLOv4 and YOLOR. For cloudy condition, the

G-RCNN, YOLOv4, and YOLOR are with equal metric

values 0.70%, although rest of models also shows com-

petitive performances. In both the frosty and fog condi-

tions, the models decreases in their performances with

highest 0.69% YOLOR and lowest 0.59% Fast-RCNN for

frosty condition, and with highest 0.69% AWRDNet and

lowest 0.57% Faster-RCNN for foggy condition. In case of

clear sky, the models improves a lot where AWRDNet

shows 0.75% metric value with most promising and 0.73%

as second best metric values for both YOLOv4 and

YOLOR.

7 Complexity analysis

In this section, we present the estimation of the parameters

and speed of the proposed approach.

Number of parameters FC layers bring more parameters

than YOLO and SSD. But, we estimated the number of

parameters for our proposed architecture convolutional

blocks, as presented in Table 5. Similarly, YOLO [13] and

SSD [15] are also calculated for comparison purpose,

where YOLO consists of 24 convolutional layers, which

gives about ‘‘X ? 80.73’’ million parameters, and SSD has

10 convolutional layers, which gives ‘‘X ? 10.3’’ million

parameters. The ‘‘X’’ is the number of parameters from the

base network, which includes transfer learning parameters.

Furthermore, our proposed network provide lesser number

of parameters, such as ‘‘X ? 1.3’’ million for N = 35 and

‘‘X ? 0.9’’ million for N = 30 and so on.

Runtime speed We evaluate the runtime of our proposed

approach and compare with other single-stage object

detectors using the PyTorch framework. The time is
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Table 3 Results on PASCAL VOC 2007 and 2012 test dataset

Stage Study Method Base

network

Train

data

#Proposals/

anchors

mAP (%)

VOC 2007 test

set

VOC 2012 test

set

Two-stage Girshick et al. [10] FastRCNN VGG16 07 2000 66.9 –

Girshick et al. [10] FastRCNN VGG16 07?12 2000 70.0 –

Girshick et al. [10] FastRCNN VGG16 12 2000 – 65.7

Girshick et al. [10] FastRCNN VGG16 07??12 2000 – 68.4

Ren et al. [11] FasterRCNN VGG16 07 300 69.9 –

Ren et al. [11] FasterRCNN VGG16 07?12 300 73.2 –

Ren et al. [11] FasterRCNN VGG16 12 300 – 67.0

Ren et al. [11] FasterRCNN VGG16 07??12 300 – 70.4

Girshick et al. [9] R-CNN BB OxfordNet 07 2000 66.0 –

Girshick et al. [9] R-CNN BB TorontoNet 07 2000 58.5 –

He et al. [20] SPP BB ZF5 07 – 59.2 –

Kong et al. [21] HyperNet VGG16 07 100 76.3 –

Kong et al. [21] HyperNet SP VGG16 07 100 74.8 –

Kong et al. [21] HyperNet VGG16 07?12 100 – 71.4

Kong et al. [21] HyperNet SP VGG16 07?12 100 – 71.3

Shrivastava et al.

[22]

OHEM VGG16 07 300 69.9 –

Shrivastava et al.

[22]

OHEM VGG16 07?12 300 74.6 –

Shrivastava et al.

[22]

OHEM VGG16 12 300 – 69.8

Shrivastava et al.

[22]

OHEM VGG16 07??12 300 – 71.9

Kim et al. [49] BBCNet FasterRCNN 07 – 73.2 –

Kim et al. [49] BBCNet FasterRCNN 07?12 – 74.9 –

Quan et al. [52] D_SCNet-127

R-CNN

R-CNN 07 – 88.9 83.8

Single-

stage

Redmon et al. [13] YOLO GoogleNet 07?12 98 63.4 –

Redmon et al. [13] YOLO VGG16 07?12 98 66.4 –

Redmon et al. [13] YOLO GoogleNet 07?12 98 – 57.9

Redmon et al. [14] YOLOv2 DarkNet19 07?12 1445 78.6 –

Redmon et al. [14] YOLOv2 DarkNet19 07??12 1445 – 73.4

Liu et al. [15] SSD300 VGG16 07 8732 68.0 –

Liu et al. [15] SSD300 VGG16 07?12 8732 74.3 –

Liu et al. [15] SSD512 VGG16 07 8732 71.6 –

Liu et al. [15] SSD512 VGG16 07?12 8732 76.8 –

Liu et al. [15] SSD300 VGG16 07??12 8732 – 72.4

Liu et al. [15] SSD512 VGG16 07??12 8732 – 74.9

Fu et al. [18] SSD321 ResNet101 07?12 17,080 77.1 –

Fu et al. [18] SSD513 ResNet101 07?12 43,688 80.6 –

Fu et al. [18] SSD321 ResNet101 07??12 17,080 – 75.4

Fu et al. [18] SSD513 ResNet101 07??12 43,688 – 79.4

Fu et al. [18] DSSD321 ResNet101 07?12 17,080 78.6 –

Fu et al. [18] DSSD513 ResNet101 07?12 43,688 81.5 –

Fu et al. [18] DSSD321 ResNet101 07??12 17,080 – 76.3

Fu et al. [18] DSSD513 ResNet101 07??12 43,688 – 80.0

Shen et al. [16] DSOD DenseNet 07?12 8732 77.7 –
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reported on a workstation server with Intel Xeon CPU, 48

GM RAM, NVIDIA TITAN XP GPU, CUDA 8.0 imple-

mentation excluding data pre-processing. On an average,

YOLO [13] takes 22.22 ms and SSD [15] takes 16.95 ms

per frame, while our approach takes 20.83 ms. Our

approach has lesser number of parameters in the convolu-

tional layers than SSD and YOLO; however, its time

consumption is more than that of SSD and less than that of

YOLO. This is because the deconvolutional operations

provide high-resolution FM and correspondingly increase

the number of parameters in fully connected layers.

8 Conclusion

In this study, we recommended a single-stage CNN

architecture, namely, AWRDNet, for restoration cum

object detection in real-time adverse atmospheric scenes.

In this correspondence, we created bounding box ground-

truth annotations on our TU-VDN dataset and data aug-

mentations for detecting objects. We summarize the out-

comes of this proposed architecture as follows. (a) A feed-

forward deeper convolutional layer produces better quality

of restoration images, wherein receptive field plays an

important role in analysing local features over degraded

scenes. (b) Another key feature of the proposed model is

the clipping of 21 pre-defined multi-scale anchor boxes per

cell to a restorated de-convolutional FM, which allows us

to efficiently reduce time-consumption. (c) In terms of

detection enactment, the results of the comparative exper-

iments on the TU-VDN dataset demonstrated the optimal

performance of our proposed model. It also revealed that

the performance accuracy in low-light or rainy conditions

is higher than that in dusty or foggy conditions. (d) The

analysis on the PASCAL VOC dataset and ZUT thermal

dataset demonstrated the comparative assessment of the

proposed approach than other recent two-stage and single-

stage state-of-the-art networks. At the last, the complexity

of the proposed architecture has drawn with total number

of parameters X ? 29542N.

To access the dataset, kindly send the user agreement

form from http://www.mkbhowmik.in/tuvdn.aspx.

Table 3 (continued)

Stage Study Method Base

network

Train

data

#Proposals/

anchors

mAP (%)

VOC 2007 test set VOC 2012 test set

Shen et al. [16] DSOD DenseNet 07??12 8732 – 76.3

Kong et al. [36] RON384?? VGG16 07?12 30,600 77.6 –

Kong et al. [36] RON384?? VGG16 07??12 30,600 – 75.4

Xu et al. [50] Deep RegionletsA VGG16 07 – 73.8 –

Xu et al. [50] Deep RegionletsA VGG16 07?12 – 80.1 –

Xu et al. [50] Deep RegionletsP VGG16 07 – 73.9 –

Xu et al. [50] Deep RegionletsP VGG16 07?12 – 80.3 –

Ma et al. [51] MDFN-11 VGG16 07?12 – 79.3 –

Ma et al. [51] MDFN-12 VGG16 07?12 – 78.3 –

Ours AWRDNet VGG16 07 * 82.6 –

AWRDNet VGG16 07112 * 82.8 81.8

AWRDNet VGG16 071112 * – 81.4

Bold fonts indicating our proposed model best performances

‘‘07’’: VOC 2007 TrainVal, ‘‘12’’: VOC 2012 TrainVal, ‘‘07?12’’: union set of VOC 2007 TrainVal and VOC 2012 TrainVal, ‘‘07??12’’: union

set of VOC 2007 TrainVal?Test and VOC 2012 TrainVal

*Number of anchors will be decided after refinement

Table 4 Performance evaluation on ZUT dataset using F1-score

metric

Methods Severe weather conditions

Drizzle Rain Cloudy Frost Fog Clear sky

Fast-RCNN 0.61 0.63 0.68 0.59 0.58 0.70

Faster-RCNN 0.63 0.68 0.68 0.61 0.57 0.71

G-RCNN 0.67 0.68 0.70 0.66 0.63 0.72

SSD 0.65 0.67 0.69 0.64 0.64 0.71

YOLO 0.66 0.67 0.69 0.65 0.66 0.72

YOLOv4 0.67 0.68 0.70 0.64 0.67 0.73

YOLOR 0.69 0.68 0.70 0.69 0.68 0.73

AWRDNet 0.67 0.70 0.69 0.68 0.69 0.75

Italic fonts indicates the overall worst and bold fonts indicates the

overall best performances
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Input image 640 9 480 9 3 0 0 0
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DC De-convolution, AM adaptive MaxPooling, MU MaxUnpooling

*No parameters are associated with the AdaptiveMaxPooling and MaxUnpooling, pool size, unpool size, stride, and padding are hyperparameters
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