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Abstract
The nuclei segmentation of microscopic images is a key pre-requisite for cancerous
pathological image analysis. However, an accurate nuclei cell segmentation is a long
running major challenge due to the enormous color variability of staining, nuclei shapes,
sizes, and clustering of overlapping cells. To address this challenges, we proposed a deep
learning model, namely, AlexSegNet which is based upon AlexNet model Encoder-
Decoder framework. In Encoder part, it stitches feature maps in the channel dimension
to achieve feature fusion and uses a skip structure in Decoder part to combine low- and
high-level features to ensure the segmentation effect of the nucleus. At final stage, we
have also introduced a stacked network where feature maps are stacks on top of each
other. We have used a publically available 2018 Data Science Bowl and Triple Negative
Breast Cancer (TNBC) datasets of microscopic nuclei images for this study which
comprises of several sample types such as small and large fluorescent, pink, purple,
and grayscale tissue samples. Experimental results show that our proposed AlexSegNet
achieved a segmentation maximum performance of 91.66% for Data Science Bowl
dataset and 66.88% for TNBC dataset. The results are competitive compared to the
results of other state-of-the-art models. This model is expected to be useful clinically
for technician experts to succeed the analysis of cancer diagnosis into the survival
chances of patients.
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1 Introduction

The segmentation of nuclei from microscopic images has persisted the cancer research
community’s key focus for decades. In human’s health concerns, cancer diseases become
the most common and life-threatening issue. In India, the incidence of various cancer growth
rate increases in the young age group at very aggressive [45]. Cancer starts from a benign state
and at the early stages without proper treatment, it becomes malignant when the nuclei cells
start to grow abnormally. According to international agency for research on cancer, world
health organization (WHO), the worldwide estimated number of new cases in 2020, the breast
cancer is the highest possible with 2,261,419 (11.7%), as shown in Fig. 1. The availability of
appropriate screening devices is essential for detecting the initial symptoms of cancer.
Numerous imaging techniques are used for the screening to detect this disease such as
mammography, thermography, histopathology, and dermoscopy [5, 6]. To improve the
accuracy of the diagnosis for patients, the histopathology microscopic images are considered
as the gold standard among other imaging techniques [6]. Moreover, the histopathological
examination can deliver more inclusive and reliable evidence to diagnose cancer and measure
its effects on the surrounding tissues [3–9].

For analysis of microscopic histopathology images, the detection and segmentation of
nuclei cells are essential steps. These segmented nuclei are used in the grading diagnosis of
many cancers which require comprehensive analysis of the characteristics of the nuclei such as
shape, size, gray value, color variation of samples, clusters of nuclei with overlapping, and
ratio of nuclei to cytoplasm. It is a major challenge in microscopic histopathology images of
different patients where the shape and appearance of the different nuclei for disease stages vary
greatly. Suppose in breast cancer, the identification of the stages of aggressiveness of the

Fig. 1 Estimated number of new cases in 2020, worldwide, both sexes, all ages [20]
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disease based upon the Nottingham Histologic Score system which also largely based off the
morphologic attributes of the histopathology nuclei [7]. As a consequence, the accurate
segmentation of histopathology image nuclei is a great challenging work in developing
automated machine via computer assisted decision support for digital histopathology. Other
than these, the segmentation of nuclei of histopathology images is essential to numerous
studies, such as feature extraction, cell counts, and classification.

There are several approaches to handle segmentation of nuclei. Classical approach for cell
image segmentation methods include region growing algorithm, threshold segmentation, edge
detection, morphology and classification-clustering methods [12–14]. Another approach very
suitable for analysis variability and complexity of medical images is deep learning. Deep
convolutional network have ability to learn and coarse representations layer by layer process
pathology images of several nuclei parts. Recently, the models include SegNet [4], ENet [41],
PSPNet [51], U-Net [44], ESPNet [30], SPNetv2 [32], ICNet [52] and Y-Net [31]. They have
achieved reasonably great performance on the segmentation compared to traditional medical
image segmentation methods: to resolve the problems of poor segmentation of small nucleus,
and under- and over-segmentation.

Even though convolutional models achieved impressive results, there is some flaws. The
boundaries of segmented image by ENet are relatively blurred, due to insufficient deployment
of shallow layer structure information. SegNet network is not well integrated the high-level
semantic information with the shallow image information which produces segmented image
with more noise points and blurred edges. Due to the limited size of receptive field in U-Net,
the perception ability of cluster nucleus is weak which leads to under-segmentation. To
overcome the above difficulties and challenges, this paper introduces a new segmentation
network, namely, AlexSegNet.

The contributions of this paper as follows:

i. AlexSegNet model is proposed to handle nucleus segmentation of histopathology images
for cancer treatment. This model is based upon AlexNet model Encoder-Decoder frame-
work. In Encoder part, it stitches feature maps in the channel dimension to achieve feature
fusion and uses a skip structure in Decoder part to combine low- and high-level features to
ensure the segmentation effect of the nucleus.

ii. Study the performance of proposed model with nuclei segmentation in microscopic
different colored histopathology, fluorescent nuclei images from publicly available
datasets. It achieves sufficient improvement into the measured metrics.

iii. A comprehensive comparative study with existing state-of-the-arts and related methods is
presented, in terms of evaluation via recall, precision, and F1-score metrics.

The rest of paper is organized as follows: Section 2 describes the related work, and Section 3
describes elaborately the proposed deep learning framework in this study. Section 4 the
experimental results, discussions, and comparison with the state-of-the-art. Section 5 estimates
the computational complexity. Finally, the paper is concluded by Section 6.

2 Related work

Over the recent times, convolutional neural network based analysis of several medical image
modalities has been demanded highly due to its robust performance. Now, we will present
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overview of the important recent developments in the medical image segmentation including
nuclei of histopathology images. Since most disease analysis highly dependent on cell-level
information, the segmentation challenge in computing technology is to investigate all the
individual cells to make correct diagnosis. Table 1 shows briefly the pros and cons for each
listed related works in this section.

A fully convolutional network (FCN) [28] was the initial full convolution neural network
which has been introduced for medical image segmentation. The authors defined a skip

Table 1 List of related works pros and cons briefly

Literature
Works

Pros Cons

J. Long et al.
[28]

Define a skip architecture to take advantage of
the feature spectrum that combines deep,
coarse, semantic information and shallow,
fine, appearance information

–

Y. Cui et al.
[10]

The idea of simultaneous nucleus-boundary
identification approach which can be applied
to other biomedical image segmentation
tasks such as gland segmentation and bacte-
ria segmentation.

There is need to do some cropping operation in
neural network training to make the size of
layers match each other, which might lose
useful surrounding information.

Ronneberger
et al. [44]

It allows the network to learn invariance to
deformations. This is particularly important
in biomedical segmentation, since
deformation used to be the most common
variation in tissue and realistic deformations
can be simulated efficiently.

Segmentation results in blurred effects.

S. Lal et al.
[25]

Addressing shape-variability and
nuclei-touching challenges during segmen-
tation.

Computational complexity in terms of the
number of parameters used and more
convolutional layers.

L. Hassan
et al. [17]

Nuclei segmentation in whole slide images of
different stains and various organs.

–

H. Wang
et al. [36]

Specially designed to handle overlap cells. Lacking performance in different image scales.

S. Grahama
et al. [46]

Accurate segmentation, particularly in areas
with overlapping instances.

The model is trained on a single tissue type.

H. Su et al.
[49]

Sparse reconstruction handles the shape
variations of cells and touching cells in
detection and segmentation.

–

J. Xu et al.
[21]

Provide accurate seed points or vertices for
developing cell-by-cell graph features.

–

A. Lagree
et al. [23]

Accurately segment invasive carcinoma of the
breast.

The study is on the relatively small dataset used
for training and testing.

Kong Y et al.
[12]

Segmentation of nuclei and overlapping
regions.

–

Debesh J.
et al. [1]

Model evaluated on various segmentation tasks
using several imaging modalities such as
colonoscopy, dermoscopy, and microscopy.
And achieved high performances.

A limitation of the DoubleU-Net is that it uses
more parameters as compared to U-Net,
which leads to an increase in the training
time.

Abhishek S.
et al. [2]

Allows the preservation of resolution, improved
information flow and propagation of both
high- and low-level features to obtain accu-
rate segmentation maps.

The model fails when extremely low contrast
images are part of the data.

Ailiang L.
et al. [50]

DS-TransUNet significantly outperforms
especially in polyp segmentation task.

Not performing well in nuclei segmentation
task
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architecture to take benefit of feature information includes deep, coarse, semantic information
and shallow, fine, appearance information. To produce fine segmentation, this network defined
as a combination of deep semantic information with shallow appearance. Cui et al. [10] also
introduced an automatic end-to-end fully convolutional neural network nucleus boundary
model for segmenting of individual nuclei and their boundaries simultaneously. This simulta-
neous idea for nucleus-boundary identification can also be applied to other applications such as
gland segmentation and bacteria segmentation. Ronneberger et al. [44] was the first who
utilized U-Net as an encoder-decoder model for medical image segmentation tasks. U-Net uses
skip connections to integrate low- and high-level information. This model allows to learn
invariance to various deformations which particularly important in biomedical segmentation
since deformation is the most common variation in tissue. Later-on, variety of U-Net exten-
sions have been exploited for medical segmentation same purpose. H-DenseU-Net [26] for
liver and tumor segmentation from CT scan, GP-U-Net [13] for lesion detection through
segmentation tasks. These U-Net based models also achieve effective segmentation in histo-
pathology images. A very popular semantic segmentation model SegNet [4] has been utilized
by S. Lal et al. [25] and proposed an extension model NucleiSegNet to address the challenges
of nuclei segmentation task in histopathology images of liver cancer. This model well-handled
shape-variability and nuclei-touching tasks during segmentation. The NucleiSegNet architec-
ture consists three blocks: a robust residual block, a bottleneck block, and an attention decoder
block. Zhao et al. [51] proposed another semantic segmentation network, namely, PSPNet,
inspired by context information of FCN. L. Hassan et al. [17] presented deep semantic nuclei
segmentation model based upon PSPSegNet in histopathology images of different organs such
as breast, kidney, prostate, and stomach.

For histopathology based nuclei segmentation task, Vu et al. [47] presented the DRAN
model by integrating both nuclei and nuclei contours to achieve accurate nuclei segmentation
results. CIA-Net [53] is another architecture for nuclei instance segmentation with contour-
aware information aggregation. Instead of using independent decoders, this architecture
exploits bi-directionally aggregated task-specific features instead of using independent de-
coders to model the texture and spatial dependencies between contour and nuclei. Histopa-
thology nuclei segmentation based on a bending loss regularized network proposed by Wang
et al. [36]. Minimizing bending loss can evade producing contours that comprise multiple
nuclei. It uses the nuclei curvature to state high penalties for touching points of overlapped
contour segments and assigns small penalties to well-stated nuclei contours. Naylor et al. [33]
also presented a model ‘DIST’ for the segmentation of histopathology image nuclei by
employing a regression concept for overlapping nuclei. Another deep learning work of Naylor
et al. [16], combination of three models, namely PangNet, FCN, and DeconvNet, segmented
the nuclei of triple negative breast cancer which then processed the posterior probability of the
nuclei to accomplish the purpose of segmenting adhesion cells. Hover-Net [46] architecture
was for simultaneous segmentation and classification of nuclei in histology images. Although
this architecture was trained on a single tissue type, authors were confident that their archi-
tecture will achieve well if it incorporate additional tissue types. This claim based due to the
robust performance of their instance segmentation architecture across multiple tissues. Recent-
ly, H. Jung et al. [26] proposed a nuclei segmentation model based on a backbone of Mask R-
CNN for whole slide images (WSI).

Stacked Sparse auto-encoder is another successful approach for nuclei segmentation in
histopathology samples. Auto-encoder is an encoder-decoder model where the encoder net-
work characterises pixel intensities modeled via lower dimensional attributes, while the
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decoder network rebuilds the original pixel intensities using these low dimensional features. Su
et al. [49] proposed a stacked denoise autoencoder (SDAE) algorithm. This algorithm used for
cell segmentation which deal with the challenges like gray inhomogeneity, shape changing,
and cells overlapping. Xu et al. [21] also used stacked sparse autoencoder (SSAE) in breast
cancer histopathology images but for detection of nuclei effectively. It provides precise
seed points or vertices for evolving cell-by-cell graph features which can allow charac-
terization of cellular topology features on tumor histology. More survey information
about segmentation in histopathology nuclei images can be referred to H. Irshad et al.
[48] and F. Xing et al. [24].

In this passage, we are listing few more recent works for accurate nuclei segmentation task.
In 2021, Lagree et al. [23] studied a novel ensemble network, namely, GB U-Net to
demonstrate the accurate breast invasive carcinoma tissue segmentation. A drawback of this
study was the small dataset utilized for training and testing due to the limited open-source
datasets. To solve the one of major challenge i.e. segmentation of nuclei as well as overlapping
regions, Kong Y et al. [12] proposed a model based on two-stage stacked learning framework
SUNets. First stage process the nuclei regions segmentation and the second stage divided the
overlapping regions. Debesh J. et al. [1] improved the performance of U-Net by combining
two U-Net networks stacked on top of each other and introduced a new model, namely,
DoubleU-Net. The model evaluated on various segmentation tasks using several imaging
modalities such as colonoscopy, dermoscopy, and microscopy. A limitation of the DoubleU-
Net was that it uses additional parameters as compared to U-Net, which leads to a rise in the
training time. Very recently, Abhishek S. et al. [2] proposed a novel network, namely, Multi-
Scale Residual Fusion Network (MSRF-Net) for medical image segmentation which utilized a
Dual-Scale Dense Fusion (DSDF) block to exchange multi-scale features of different receptive
fields. The limitations of the proposed network is that it fails to extremely low contrast images
for proper segmentation. Ailiang L. et al. [50] also introduced a model ‘DS-TransUNet’ for
several medical image segmentation tasks. The authors claimed that the Dual Swin Trans-
former U-Net (DS-TransUNet) might be the first effort to simultaneously incorporate the
advantages of hierarchical Swin Transformer into both encoder and decoder of the typical U
shaped network to enrich the semantic segmentation quality. This model significantly outper-
forms especially in polyp segmentation task.

It is worth noting that color variation in histopathology images, cluster of nuclei with
overlapping, shape, and size between different nuclei degrade the performance of the above
mentioned nuclei-segmentation deep CNN models. In this study, we present a promising
nuclei segmentation model for overcoming these limitations. To demonstrate the effectiveness
of the model, we consider histopathology microscopic or fluorescent microscopic images of
nuclei cells.

3 Methodology

Natural scenes have clear outlines that makes easy in segmentation, whereas medical
images have great complication itself causes the separation between its nucleus to be
blurred, not clear enough. To visualize the structure of tissues in stains, different color
issues makes trouble such as nuclei are in blue/purple and cytoplasm in pink. Other
challenges are the characteristics of the nuclei such as shape, size, gray value, and clusters
of nuclei with overlapping.
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After studying several convolutional models, we noticed some flaws even though these
models achieved impressive results. For example, insufficient deployment of shallow layer
structure information (i.e. ENet), inadequate integration of high and low level semantic
information (e.g. SegNet), limited size of receptive field (i.e. UNet). To overcome the above
difficulties and challenges, we have proposed a new nuclei segmentation encoder-decoder
model, namely, AlexSegNet where AlexNet used as an encoder base model.

3.1 Problem definition

Given a biological image set S, our motive is to assign each pixel of an image to a class

belonging to either nuclei regions or non-nuclei regions. We have S ¼ I j
�

;GjgNj¼1, where Ij

represents original RGB images, and Gj ¼ g jð Þ
i ; i ¼ 1; 2;…; I j

�� ��; g jð Þ
i ∈ 0; 1f g

n o
denotes their

corresponding ground truth mask results. Each mask has each pixel labelled as g jð Þ
i ¼ 1 for

representing nuclei regions and g jð Þ
i ¼ 0 for representing non-nuclei regions. The aim is to

train a pixel-wise classifier to learn the following mapping function:

S j ¼ AlexSegNet I j
� � ð1Þ

where AlexSegNet represents our proposed model and Sj is the segmented output.

3.2 Proposed architecture

The overall proposed architecture consists of three levels, as shown in Fig. 2. We will continue
next sub-sections with discussions of levels.

Fig. 2 Our Proposed Architecture, namely, AlexSegNet. K: kernel, S: Stride, D: Dilated rate, P: Padding, s:
same, v: valid

Multimedia Tools and Applications



3.2.1 Level 0: Encoder – Enhanced AlexNet

AlexNet, one of the first CNN network used for classification purpose. Till date no one
explored this engrained network for medical image segmentation. The network have multi-size
kernels (11 × 11 at conv1, 5 × 5 at conv2, 3 × 3 at rest of network layes) makes larger
receptive field which increases the perception ability of cluster nucleus and will handle under-
segmentation. The network consists of eight layers: five convolutional layers and three fully-
connected layers. We have changed few thing in internal structure of network to enhance the
performance.

In the convolutional blocks, the replacement of normal convolution (blue block) with atrous
convolution (pink block) has done. The reason behind replacement is exponential expansion of
reception field which is a promising side to handle overlapped cluster nucleus segmentation.

Atrous convolution is support exponential expansion of the receptive field without loss of
resolution. It is applied to input feature map (F : Z2 → R be a feature map discrete function)
with definite gaps in the kernels (k : Ωr → R be a kernel of size (2r + 1)2). Atrous
convolution can be formulated as [42].

F*akð Þ ¼ ∑i∑aj F ið Þk ajð Þ ð2Þ
where ‘a’ be a atrous factor. If atrous rate is 1, it means the convolution kernel is normal, and if
the atrous rate is 2, then there is a skip of one pixel per input. Increasing the stride reduces the
dimension of the output. A 2 × 2 atrous convolution has the same receptive field as a 3 × 3
un-atrous convolution. It will be better to visualize how a filter with spread out receptive field
as in Fig. 3:

AlexNet is generally used for classification purpose where convolution blocks are usually
flattened and then fully connected layers end up to give classification results. However, the
retained spatial information got lost. Therefore, the three fully connected layers has been
converted to fully convolutional layers (green block) as FCL 1, FCL 2, and FCL 3, as shown in
Fig. 2. These layers are very essential to retain micro information’s which are very important
especially for medical microscopic imaging. If a fully connected (FC) vector ( f pc ) consists of p
number of neurons, then the corresponding fully convolutional layer (fcl) can be mapped as
follows:

Fig. 3 Reasonable description between normal and atrous convolution
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f pc→
l�l; d¼2 f cl½ �i� j�p ð3Þ

Where l × l is the kernel size and d is the dilation rate. This mapping of fully connected to
fully convolutional layer creates a tensor of size i × j with p number of channels.

FCL 1 is convoluted over 2304 channels of kernel size 3 × 3 with atrous rate 2. Similarly,
FCL 2 and 3 convoluted over 1096 channels of kernel size 1 × 1 with atrous rate 2. These
FCLs gone through dropout with probability 0.4 to reduce overfitting issues.

3.2.2 Level 1: Decoder – Reconstruction

In encoder network, we reduces size of feature maps gradually up to 4 × 4 to extract low level
textural information. Now, the decoder network will be gradually reconstruct the feature maps
by up-sampling high level information. Every step in the decoding module consists of three
details. First, an up-sampling transpose convolution operation enlarges the size of every feature
map twice. Second, the feature maps concatenate via skip connection with the corresponding
feature maps from the encoding network to avoid losing pattern or spatial information. The
concatenation can fuse the low and high level information of the feature maps, and enhance the
perception ability to smaller and larger nucleus. Third, it conducts one 3 × 3 atrous convo-
lution operation with rate 2 followed by a ReLU and dropout operations.

In skip connection operation, the skip connection explicitly concatenate the feature maps

generated in upper level (ul) with current level (cl) feature maps. Let ∑ul−i
cl be concatenate

layer. The convolutional (normal or atrous) feature map ∁cl − 1 in the preceding layer
is up-sampled by a scale factor φs (where φs = 2n) which will increase the dimension
of the (cl − 1)th layer by a factor of 2n, and then concatenate it with an upper level
convolutional feature layer Cul − i where i be the number of skipped layers from the
concatenated layer. It can be formulated as

∑ul−i
cl ¼ ∁cl−1*φs

� �
⨁ Cul−i� � ð4Þ

There are three up-sampling feature maps. First up-sampled feature map of size 8 × 8 with
channels 384 has concatenate with conv5 block. Second up-sampled feature map of size 16 ×
16 with channels 256 has concatenate with conv2 block. Third up-sampled feature map of size
32 × 32 with channels 96 has concatenate with conv1 block.

3.2.3 Level 2: Final touch – Segmentation

As a last contribution, we have also introduced a stacked network where feature maps are
stacks on top of each other. By inspired from PSPNet [51], the third level is presented where
three different scales of convoluted layers from level 1 are up-sampled again as original image
resolution 136 × 136 with 96 channels each. The stacking via concatenation of these newly
un-sampled feature maps comprises of global and local information which will be able to
capture the context of the whole image. For final representation, a last 1 × 1 atrous
convolution with 1 channel operation has applied to produce the per pixel prediction i.e. the
segmented mask Sj.

As our problem definition is of two class labels i.e. binary class. So we have considered a
sigmoid function as it reflects real values ranging between 0 and 1. The sigmoid activated
output function Pr may be denoted as
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Pr Oj ¼ qjS j; ρ
� � ¼ 1

1þ ∑1
q¼0exp −ρqS j

� � ð5Þ

where Oj be the actual output belonging to q number of classes ranging between 0 and 1, Sj is
the final output feature map obtained at last atrous convolutional layer and ρ be the parameter
for the sigmoid function.

4 Experimental analysis

This section is divided into three subsections. In subsection (4.1), we analyze the performance
of the proposed model, namely, AlexSegNet over several optimization strategies on the 2018
Data Science Bowl [46] and TNBC [49] datasets via performance metrics. In subsection (4.2),
we compare proposed network model against existing base state-of-the-art segmentation CNN
models. In subsection (4.3), assessment of the proposed model has been studied along with
recently reported article results.

4.1 Brief introduction to datasets

For experimental evaluation, the 2018 Data Science Bowl [35] has been chosen which consists
of 37,333 manually annotated nuclei in 841 2D images from different samples. The nuclei are
derived from several organisms including humans, mice, and flies. As well, nuclei have been
captured in a variety of conditions such as stains of fluorescent and histology, color of tissues,
several magnifications, and illumination effect variations. The training dataset consists of total
670 images along with ground-truth. We have not considered test dataset (total of 68 images)
since it doesn’t contains of ground-truth. From training dataset, we splits 600 for training and
rest 70 for testing. The dataset have imbalance distributions of samples of categorical nuclei, as
shown in Fig. 4.

The second dataset has been selected is Triple Negative Breast Cancer (TNBC) nuclei
segmentation database [11]. It contained 50 H&E stained samples those taken at 40x magni-
fication with 512 × 512 resolution images. All 50 images were extracted from 11 number of
patients with several cell types including normal epithelial cells, myoepithelial breast cells,
fibroblasts, invasive carcinoma cells, endothelial cells, macrophages, adipocytes, and inflam-
matory cells. Overall summary for both datasets are listed in Table 2.

Fig. 4 Dataset sample distributions and variety of sample conditions [37]
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4.1.1 Data augmentation

Since the used training dataset has a low number of samples, the proposed model might be
prone to over-fit problem. To produce a proficient performance by addressing over-fitting
challenge, data augmentation procedures are essential. Data augmentation through sample
rotation by 50 degree, shear with factor 0.5, zoom with factor 0.2, fill mode with reflect, and
lastly shift by factor 0.2 both width and height. That allow to extending the size of the dataset
without deteriorating its quality. After these five approaches of data augmentation, the total
number images listed in Table 2.

4.1.2 Evaluation metric

Specificity (Spec), Precision (Pre), Recall (Rec), F1-score (F1), Matthews Correlation Coeffi-
cient MCC, and Accuracy (Acc) are employed as the assessment metric for nuclei segmenta-
tion. The calculation formulas are shown in Eqs. (6–10) [40]. Spec represents the truely
negative segmented nuclei rate, Acc represents the ratio of the truely positive segmented
nuclei and all the background pixels. Among the total amount of segmented nuclei pixels,
Precision represents the ratio of truley positive predictive segmented nuclei in label images,
and Rec represents the percentage of the total amount of nuclei pixels correctly segmented in
label images. F1-score value is used to estimate the harmonic average of the Prec and Rec. F1
could give a biased outcome since it doesn’t include TN, and in such cases MCC is a perfect
balance metric for evaluating performance. TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative respectively.

Spec ¼ TN
TN þ FP

ð6Þ

Rec ¼ TP
TP þ FN

ð7Þ

Pre ¼ TP
TP þ FP

ð8Þ

F1 ¼ 2� Pre� Rec
Preþ Rec

ð9Þ

Table 2 Summary for datasets Data Science Bowl and TNBC

Dataset No. of Images Resolution Training Size Testing Size No. of Images after
Augmentation

Data Science
Bowl

670 256×256
to
1024×1024

600 70 600×5=3000

TBNC 50 512×512 47 3 47×5=235
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MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð10Þ

4.1.3 Training and testing parameters

We trained the proposed model for 20 epochs and 14 epochs on the training dataset from 2018
Data Science Bowl and TNBC nuclei images. From this training samples, the splits for
training-validation has done at 0.9:0.1 ratio. The overfitting avoiding strategy has done
through data augmentation. Throughout training, a batch size of 10 used, and the loss
estimating is binary cross entropy. It can be seen from Fig. 5 that when the iteration period
is about 20 for Data Science Bowl and about 14 for TNBC, the validation loss/accuracy stops
decreasing/increasing which means of leading to the training termination. In fact, the model
starts to get relatively decent performance when training after the few epochs in case of Data
Science Bowl dataset. However, this decent performance is not seen in case of TNBC due to
very limited number of histopathology nuclei sample images.

4.2 Evaluation of proposed model on 2018 data science bowl dataset and TNBC
dataset

Table 3 shows the performance results of the nuclei segmentation of proposed model on 2018
Data Science Bowl dataset. These results are measured in terms of several well-known metrics

Fig. 5 Loss and accuracy curve of training and validation on 2018 Data Science Bowl dataset (first row) and
TNBC Nuclei Segmentation dataset (second row) under AlexSegNet proposed model

Multimedia Tools and Applications



such as specificity, precision, recall, F1 score, MCC, and accuracy. The tested nuclei samples
are categories into small fluorescent, purple tissue, large fluorescent, pink purple tissue, and
grayscale tissue. The proposed model evaluation also analysed via several optimization
strategies such as adamax, adam, nadam, rmsprop, sgd, adagrad, and adadelta. Now, we will
investigate each nuclei sample categories.

In small fluorescent nuclei samples, the metric values of specificity (0.9857, 0.9854,
0.9842), F1 (0.9150, 0.9123, 0.9842), and MCC (0.8990, 0.8963, 0.9007) gets approximately
equal in adamax, adam, and rmsprop optimizers, respectively. We have received a little lower
in nadam optimizer. We also noticed that the recall and precision has balanced values in
adamax than adam, rmsprop, and nadam. Here, the other optimizers like sgd, adagrad, and
adadelta are not giving promising results, and adamax is most promising.

In case of purple tissue samples, the specificity (adamax = 0.9546, adam = 0.9409,
rmsprop = 0.9495), F1 (adamax = 0.8427, adam = 0.8617, rmsprop = 0.8374) and MCC
(adamax = 0.7746, adam = 0.7949, rmsprop = 0.7699) gets nearly equal but slightly lesser
than small fluorescent samples. The nadam optimizer also promising. The recall and precision
values difference is somehow bigger as compared to small fluorescent samples which as
consequences shows lower F1 scores. The recall values are low due to improper segmentation
of region interest (ROI) from nuclei. The sgd, adagrad, and adadelta as usual shows low
performances.

Table 3 Performance Metric values for proposed model, AlexSegNet, on 2018 Data Science Bowl Dataset

adamax adam nadam rmsprop sgd adagrad adadelta

Small Fluorescent Spec 0.9857 0.9854 0.9775 0.9842 0.9410 0.9119 0.9129
Pre 0.9217 0.9031 0.8797 0.9068 0.6873 0.5129 0.5232
Rec 0.9132 0.9275 0.9096 0.9313 0.6917 0.5421 0.5456
F1 0.9150 0.9123 0.8911 0.9166 0.6834 0.5270 0.5341
MCC 0.8990 0.8963 0.8704 0.9007 0.6252 0.5012 0.5134
Acc 0.9738 0.9732 0.9659 0.9740 0.9074 0.8912 0.8876

Purple Tissue Spec 0.9546 0.9409 0.9106 0.9495 0.8412 0.8076 0.8012
Pre 0.9188 0.9017 0.8583 0.9114 0.7477 0.5487 0.5223
Rec 0.7848 0.8329 0.7352 0.7870 0.6247 0.4231 0.4145
F1 0.8427 0.8617 0.7686 0.8374 0.6427 0.4777 0.4621
MCC 0.7746 0.7949 0.6820 0.7699 0.5000 0.4043 0.3976
Acc 0.9033 0.9111 0.8680 0.9027 0.7921 0.6987 0.6791

Large Fluorescent Spec 0.9748 0.9546 0.9139 0.9749 0.8922 0.8434 0.8509
Pre 0.7611 0.6917 0.6159 0.7619 0.5661 0.4986 0.4899
Rec 0.8779 0.9228 0.9300 0.9129 0.9000 0.6025 0.6265
F1 0.8152 0.7892 0.7266 0.8303 0.6732 0.5456 0.5498
MCC 0.7987 0.7747 0.7144 0.8176 0.6612 0.5257 0.5178
Acc 0.9664 0.9537 0.9204 0.9699 0.9008 0.8201 0.8147

Pink Purple Tissue Spec 0.9860 0.9733 0.8814 0.9870 0.9350 0.8753 0.8852
Pre 0.9227 0.8591 0.6266 0.9239 0.7197 0.5980 0.5982
Rec 0.6876 0.6705 0.8203 0.6486 0.6885 0.4321 0.4147
F1 0.7880 0.7531 0.7105 0.7621 0.7038 0.5016 0.4898
MCC 0.7573 0.7101 0.6377 0.7326 0.6341 0.4769 0.4732
Acc 0.9278 0.9142 0.8695 0.9210 0.8868 0.6726 0.6509

Grayscale Tissue Spec 0.9957 0.9506 0.9459 0.9760 0.9915 0.8999 0.8839
Pre 0.6456 0.5076 0.4158 0.5661 0.5432 0.3515 0.3523
Rec 0.5521 0.6018 0.4550 0.3705 0.4331 0.2924 0.2848
F1 0.5951 0.5507 0.4345 0.4479 0.4819 0.3192 0.3149
MCC 0.5715 0.5113 0.3848 0.4221 0.4702 0.3012 0.2934
Acc 0.9252 0.9233 0.9075 0.9287 0.9215 0.8843 0.8765
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In large fluorescent nuclei samples, we received high specificity values over adamax, adam,
rmsprop as usual. The proposed model is capable enough to truly discriminate the
negative portions from the ROI nuclei portion. The recall and precision unbalance factor
also observed like the case of purple tissue but opposite i.e. precision values are low and
recall values are high. That means, the proposed model segmenting ROI nuclei very well
which produces good recall value, along with some unwanted segmented results which
reduces the precision values. Among promising optimizers, here we noticed rmsprop is
slightly better.

In case of pink purple tissue, we have faced similar unbalance effects in recall and precision
values where recall values are low. This is happening due to different color of tissues in
histopathology stains that makes improper segmentation of tissue. In this case, the sgd
optimizer shows a balanced factor between recall and precision however low metric results.
In terms of F1 and MCC, the adamax is most promising.

In grayscale tissue, we have received maximum specificity of 99.57% through adamx
optimizer. However, we also received lowest performances over all optimizer and
metrics.

As a whole, the adamax shows outperform over all optimizer. Therefore, all succeeding
evaluations are continued with adamax. In terms of accuracy, the small fluorescent samples
shows highest accuracy of 97%, followed by large fluorescent of 96%.

Now, Fig. 6 shows the performance results of the nuclei segmentation of proposed model
on TNBC dataset. These results are also measured in terms of several metrics and optimization
strategies. The tested nuclei samples are only category of breast histopathology tissues. In
these nuclei samples, the metric values of specificity gets highest in adamax, nadam, adagrad
and adadelta optimizations. This is only the case where adagrad and adadelta achieved
impressing results. We are received good precision values in this dataset where adamax,
nadam and rmsprop shows promising. The precision values are good means our model
doing well segment without much wrongly positive nuclei cells. The recall is not as per
expectation due to lesser number of image samples in this dataset. The adamax optimi-
zation giving highest recall value. Due to the less recall values, the corresponding F1
score and MCC also gets effected. The achieved accuracy of our proposed model is
approximately 90% through adamax and rmsprop optimization strategies.

Fig. 6 Performance Metric values for proposed model, AlexSegNet, on TNBC Nuclei Segmentation Dataset
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4.3 Comparative study of proposed model AlexSegNet with base state-of-the-art
models

In this section, we compare AlexSegNet against UNet [44], PSPNet [51], SegNet [4], and FCN
[28] versions 8 and 16. All models have their own design of architectures whereas FCNs are
used base model VGG for encoder. Therefore, we have used AlexNet as base model for our
proposed segmentation model.

Figure 7 shows the boxplots of F1-measure and MCC for all nuclei segmentation models. A
boxplot is analysed through a given scores of test images with a specific prototypical five-
number of definition summary such as the maximum (max), the minimum (min), the sample
median (middle horizontal line), the first quartiles (q1), and third quartiles (q3). As in the
Fig. 7a and b shows for Data Science Bowl dataset, the FCN 8 and FCN 16 models have not
any outliers on F1-score and one outliers on MCC values, however, both the models shows
lowest performance values of sample median, min, max, q1 and q3. The same scenarios has
also noticed in Fig. 7c and d for TNBC dataset. In case of Data Science Bowl dataset, U-Net
and SegNet models has the approximately equal median F1-score and MCC, but F1-scores
produces the higher number of outliers than MCC evaluation metric values. However, in case
of TNBC dataset, SegNet shows higher mean values than U-Net for both F1-score and MCC.
Whereas PSPNet model promising as a fourth best model for Data Science Bowl dataset and
second best model for TNBC dataset in our comparative evaluation. As we have seen for Data
Science Bowl dataset, AlexSegNet model almost achieved the highest median F1-score of
95% with 4 outliers and MCC of 94% with 2 outliers. In TNBC dataset, AlexSegNet model

(a)   F1-Score from Bowl Dataset     (b) MCC from Bowl Dataset 

(c) F1-Score from TNBC Dataset     (d) MCC from TNBC Dataset 

Fig. 7 Boxplots of F1-score and MCC of the six nuclei segmentation models where (a) and (b) for 2018 Data
Science Bowl Dataset, (c) and (d) for TNBC Nuclei Segmentation Dataset
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achieved the highest median F1-score of 77% and MCC of 71%. The TNBC based boxplots
are looks unusual due to its lesser number of testing samples.

To provide a better visual understanding of the segmentation results, typical segmented
outputs of nuclei from different categorical samples are shown in Fig. 8 under various base
state-of-the-art models. In case of grayscale tissue samples, the PSPNet shows most favourable
segmented output.

4.4 Comparative assessment of proposed model AlexSegNet with recently reported
state-of-the-art article models

Table 4 shows quantitative comparative assessment of the proposed model along with recently
reported article results. We compared our model against several deep learning based medical
image segmentation models listed in Table 4. Our model performs competitively with present
state-of-the-art methods on the two datasets i.e. 2018 Data Science Bowl and TNBC in the
integrity of the segmentation of a multiple nucleus. In order to make the comparison objec-
tively, we followed the articles proposed models for two datasets separately. In case of 2018.

Original Image Ground-Truth AlexSegNet 
(Proposed) U-Net PSPNet FCN-8 
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Fig. 8 Typical segmentation results of various nuclei samples from 2018 Data Science Bowl dataset and TNBC
dataset. Column (1) shows original samples, column (2) shows ground-truth binary mask, column (3) shows
segmented results under proposed model, column (4) shows segmented results under U-Net model, column (5)
shows segmented results under PSPNet model, and last column shows segmented results under FCN-8 model
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Data Science Bowl dataset, the network models listed are DoubleU-Net [1], FANet [43],
Attention U-Net [38], MSRF-Net [2], DS-TransUNet-L [50], DCSAU-NET [9], MKDCNet
[15], DeepLabV3+ (ResNet50) [39], and PraNet [34]. The performance results of the networks
utilized in this comparison are sourced from the respective publication. In terms of recall
values, our model achieved very well metric value of 0.9313 which is just few percentage less
than newly proposed models in 2022 i.e. MSRF-Net [2] and DS-TransUNet-L [50]. In
precision values, our model shows second best achievement with 0.9239 where DoubleU-
Net shows 0.9496. The results of the comparison confirmed the competitive of our model
which achieved a F1-score of 0.9166 for 2018 Data Science Bowl dataset. This outcome
demonstrates that our model has a great generalization ability since these segmented nuclei
images having accurately segmented with lesser wrongly negative nuclei (recall) and wrongly
positive nuclei (precision) cells.

In case of TNBC dataset, the network models listed are DeconvNet [22], Ensemble [18],
two-stage learning U-Net (DLA) [19], two-stage stacked U-Net (SU-Net) [12], and gradient
boosting network U-Net (GB U-Net) [23]. The results of the comparison confirmed the
superiority of our model which achieved a precision of 0.8863. Our model highly effected
in recall value which consequences in F1-score as well even after highest precision value. This
outcome also demonstrates that our model has a generalization ability since these segmented
nuclei images having average wrongly negative nuclei (recall) and lesser wrongly positive
nuclei (precision) cells.

5 Computational cost or time complexity analysis

The proposed AlexSegNet model is primarily based on three levels i.e. level-0, level-1, and
level-2 in parallel. In this subsection, we will compute the computational cost from each level.
Our proposed model framework has convolutional layers (either normal or atrous), fully
convolutional layers, pooling layers, transpose convolutional layers, concatenations, batch
normalizations, and dropouts. However, the pooling layers, concatenations, dropouts, and

Table 4 Quantitative comparison of different methods applied to the 2018 Data Science Bowl and TNBC
datasets. + indicates chosen best metric values

Dataset Article Models Recall Precision F1-Score

2018 Data Science Bowl DoubleU-Net [1], 2020 0.6407 0.9496 –
FANet [43], 2022 0.9222 0.9194 0.9176
Attention U-Net [38], 2018 0.9183 0.9235 0.9179
MSRF-Net [2], 2022 0.9402 0.9022 –
DS-TransUNet-L [50], 2022 0.9378 0.9124 0.9219
DCSAU-NET [9], 2022 0.9221 0.9063 0.9083
MKDCNet [15], 2022 0.9270 0.9194 0.9237
DeepLabV3+ (ResNet50) [39], 2018 0.9220 0.8902 0.9134
PraNet [34], 2020 0.9182 0.8438 –
Ours+ 0.9313 0.9239 0.9166

TNBC DeconvNet [22], 2015 0.773 0.864 0.805
Ensemble [18], 2017 0.900 0.741 0.802
Two-stage learning U-Net (DLA) [19], 2019 0.833 0.826 0.829
SU-Net [12], 2020 0.853 0.792 0.806
GB U-Net [23], 2021 0.5541 0.8102 0.6581
Ours+ 0.5421 0.8863 0.6688
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batch normalizations only consume 5% to 10% of the computational time [53], while
convolutional layers, fully convolutional layers, transpose convolutional layers consume the
majority of the time. So to simplify, we will only elaborate the complexity of these
layers as in [29].

Let p be a convolutional layer, so the complexity at this layer would be Big−O
1
α Ip−1 � Kp � S2p � F2

p

h i� �
where Ip − 1 is the number of input channels in the (p − 1)th

layer, Kp is the number of kernels in the pth layer, S2p is the spatial size of each kernel in the pth

layer, F2
p is the spatial size of output map, 1α is the feature map size reduction rate after pooling

execution at each convolutional layer. Therefore, the summing up the time complexity for all
the ℵ = 9 (level-0: 5 convolutional layers either normal or atrous, level-1: 3 atrous
convolutional layers, level-2: 1 atrous convolutional layer) number of convolutional layers
in the framework, we get

* ¼ Big−O ∑ℵ
p¼1

1

α
Ip−1 � Kp � S2p � F2

p

h i	 

ð11Þ

Similarly, we will estimate the complexity for transpose convolutional \or de-convolutional
layers. Consequently, the calculative formula would be

\ ¼ Big−O ∑ℵ
p¼1β Ip−1 � Kp � S2p � F2

p

h i� �
ð12Þ

where β is the feature map expansion rate after unpooling execution at transpose convolution
layer. In case of Eq. (12), ℵ = 6 (level-1: 3 transpose convolutional layers, level-2: 3 transpose
convolutional layers) number of transpose convolutional layers in the framework. Therefore,
the overall complexity of our model is computed as

Ο ¼ *þ\ ð13Þ
As consequences, our model uses 47 million parameter which is as compare lesser if we are
comparing with FCN network [28]. However, the number of parameter used by UNet [44] is
2.6 million which consider as a limitation of the AlexSegNet that leads to an increase in the
training time. In future, the number of parameters will be tried to reduce by replacing base
AlexNet architecture kernel sizes. If we see from model size the point of view, AlexSegNet
uses only 15 layers which is an advantage. Whereas, the U-Net [44] model consumed 23 layers
and SegNet [4] utilized 26 layers where fully connected layers had been discarded.

6 Conclusion

This study introduces a deep convolutional encoder-decoder architecture based upon AlexNet,
namely, ‘AlexSegNet’ for nuclei segmentation in microscopic pathological images. The
architecture consists of three levels: Level 0 – enhanced AlexNet encoder, Level 1 – decoder
for image reconstruction, and Level 2 – finishing touch for segmentation. The 2018 Data
Science Bowl and TNBC datasets are used for experimentation and to demonstrate the
proposed nuclei segmentation architecture. In the process of model training, numerous opti-
mization have been analysed whereas adamax specified most promising results and improve
the segmentation performance. From the comparative studies, it has been observed that only
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grayscale tissue samples segmentation has not been done well by our model whereas PSPNet
state-of-the-art model well performed in these grayscale samples. As overall evaluation reveals
that our proposed architecture achieves maximum recall value of 0.9313, precision value of
0.9239, F1 score of 0.9166 for Data Science Bowl dataset, and in case of TNBC dataset, recall
value of 0.5421, precision value of 0.8863, and F1 score of 0.6688.

In future, the number of parameters will be tried to reduce by replacing base AlexNet
architecture kernel sizes. The proposed AlexSegNet architecture will also be enhanced in many
image processing handcraft features point of view such as Fourier transform, wavelet trans-
form, and so on.
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