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Abstract
A projection learning space is an approach to mapping a high-dimensional vector space to
a lower dimensional vector space. In this paper, we proposed an algorithm, namely, AOS:
Akin based Orthogonal Space. The algorithm is driven with two major targets - (i) to choose
most representative image(s) from a group of face images of an individual, (ii) finally to
produce a learning space which follows a Gaussian distribution to reduce the influence
of grosses like non-Gaussianly distributed data noises, variations in facial expression and
illumination. To improve the recognition performance, we proposed another approach i.e.
fusion between AOS features and a custom VGG features. We justify the effectiveness of
the proposed approaches over five benchmark face datasets using two classifiers. Experi-
mental results show that the proposed learning algorithm has obtained maximum of 92.22%
recognition rate, as well deep learning based fusion approch greatly improves the recogni-
tion accuracy. The comparative performances demonstrate that the proposed method could
significantly outperform other relevant subspace learning methods.

Keywords Subspace · Orthogonalization · Akinity · Liability · Representative score ·
Custom VGG

1 Introduction

In the face analysis, we often assume that the data is noise-free; in practical scenarios the
image data are polluted by gross non-Gaussian noise and corruptions like illumination,
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expression and pose variations. To assuage these drawbacks and being motivated by J.
Brendan et al. [12], we have proposed a new subspace learning method in order to choose
representative face image(s) to reduce dimensionality, and if such space follows Gaus-
sian distribution, it will reduce the aforementioned grosses. At this state, a question may
arise: why another subspace method is there? All the state-of-the-art methods are basi-
cally based on optimizations, eigenvector evaluations which are highly intricate. Instead,
our proposed method is ease of implementation, easily understandable, there is no com-
plicated mathematical formulation like eigenvector decomposition or independent vector
optimization.

The common subspace learning methods are mostly based on similarities [7, 8, 10,
11, 20], correlations [13, 21, 22], eigenvector decompositions [23, 42], laplacianfaces [6],
orthogonal basis vectors [18, 19], independent basis vectors and optimization [1–3] of sig-
nals separation. The classic subspace learning method, Trunk et al. [37, 38] proposed an
unsupervised method i.e. Principal Component Analysis (PCA) for face recognition, which
uses total scatter matrix to obtain maximum variance among all the data. PCA eigenface
model can be resolved using Singular Value Decomposition (SVD) [23] of the covari-
ance matrix, where PCA is based on eigen values and SVD is based on singular values.
Modified extended version of PCA which known as Incremental PCA (IPCA) [9, 15, 25,
33] and Candid Covariance-free IPCA (CCIPCA) [43], all are allowed to add upcom-
ing images and update the PCA representation accordingly. These methods estimate the
principle components of a sequence of samples incrementally without computing the covari-
ance matrix. Independent Component Analysis (ICA) [1], a generalized version of PCA,
is first applied to face recognition by Bartlet et al. [3]. It is concerned with second-order
dependencies as well as highorder dependencies between variables. The authors also sug-
gested two ICA architectures, namely, ICA Architecure I and ICA Architecure II. In last
decades, J. Yang et al. [48] re-evaluate the performance of two ICA architectures using
standard PCA, and find that ICA Architecture I involves a vertically centered PCA process
(PCA I), while ICA Architeture II involves a whitened horizontally centered PCA process
(PCA II).

Similarity or correlation analysis has also been an attractive research domain in the field
of image analysis and pattern recognition. An unsupervised subspace learning method-
Canonical Correlation Analysis (CCA) [26] is based on similarity metric which can simul-
taneously deal with two sets of data, in contrast to PCA and other subspace methods. A
general framework using the linear approximation form for the non-linear methods in the
mode of graph based subspace learning, such as Linear Graph Embedding (LGE), Local-
ity Preserving Projection (LPP) [16, 27] has many applications due to its effectiveness and
simpleness. The LPP is a low-dimensional embedded space where the locality relationship
of samples can be preserved. Further, LGE and LPP are non-orthogonal and this makes
them difficult to reconstruct the data. Their counterparts naming Orthogonal Linear Graph
Embedding (OLGE) and Orthogonal Locality Preserving Projection (OLPP) [6] extract fea-
tures from the original data set by solving common eigenvalue problem. These orthogonal
basis have more discriminating power than their base methods.

The contributions of this paper are as follows:

1) An algorithm called ‘Akin based Orthogonal Space (AOS)’ has proposed with the fol-
lowing intention: (i) to generate a list of representative face subspaces (RFS). Each
subspace is encoded by choosing the representative face(s) from a group of face
images of an individual; (ii) to make non-orthogonal ‘RFS’ subspaces to an orthogonal
space.
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2) To improve the performances with the help of proposed learning space, we adapt
another approach i.e. fusion approach of proposed method with a custom VGG
convolutional neural network model.

3) To establish the performances of proposed approaches over other existing state-of-
the-art dimension reduction subspaces, numerous experiments and comparative studies
have been conducted over IRIS, USTC-NVIE, ORL, YALE, and FRGC for face
recognition over grosses like expressions and illuminations.

The remainder of the paper is structured as follows: Section 2 contains related literature
works, Section 3 describes the theoretical background and algorithmic steps of proposed
algorithm, and Section 4 presents a fusion approach with convolutional neural network.
Section 5 evaluates and analyses the algorithm over five face-image databases and compares
their performances. Section 6 offers conclusions and outlines future work.

2 Related works

Most common approach towards face recognition problem is done through dimension
reduction by Eigen spaces [1–3, 6, 9, 18, 19, 23, 25, 37, 38]. Face recognition without Eigen
spaces, namely, pairwise face recognition, has been extensively studied during past decay
[7, 8, 10, 11, 13, 20–22]. Nevertheless, it is still an on-going in terms of state-of-the-arts
complex nature as well as several practical factors such as illumination, pose, expression,
and so on. Cai et al. [6] proposed a face recognition linear algorithm ‘orthogonal lapla-
cian faces’ which can also be performed in reproducing kernel Hilbert non-linear space.
Here the space has assumed to be connected but the real world data could be disconnected
and thus different components have different dimensionality. Kim et al. [19] also worked
on orthogonal subspace which is an on-line learning update procedure. One of very well-
known classic Eigen space methods introduced by Trunk et. al. [37] performs with high
accuracy although substantially its rejection rate is ‘unknown’, and not robust to changes
in lighting, head size, and orientation. An extension robust incremental learning version of
PCA [33] which adopts to input images as they arrive, is able to treat each pixel and each
image differently. Nonetheless the re-learning for more recent images has not been investi-
gated. Another method proposed by Weng et al. [43] also estimates principle components
from incoming data without computing the covariance matrix. Recently, Tang et al. [34]
proposed a regression algorithm in order to solve the problem of insufficient utilization of
the sample information. Tang et al. [35] proposed another subspace classification for face
recognition that can make the sample points to be linear separable by utilizing the kernel
function. But it has own weakness that it cannot classify the sample points that distribute
around the intersection very well. In the concern of high-order dependencies between vari-
ables, Bartlet et al. [3] introduced ICA. To reduce overlapping probability densities of the
composite variables, Bhowmik et al. [5] proposed a next generation variant of ICA. The
weakness of this variant is that it highlight the enhanced result in log-ICA II only.

Facial similarity makes classification difficult due to its non-rigid nature of human faces.
There are methods to the cases that only consider pairwise similarity or correlations between
samples available in literature. Gomez et al. [11] aimed at mimicking the human ability to
differentiate people that proposed algorithm composed of different one-dimensional projec-
tion lines. Whereas Cao et al. [7] proposed a new approach to learning the embedding of
faces in a gallery with human perception of facial similarity. Due to annotation cost, they
experimented on a small set of the face dataset. For high-dimensional data, Klami et al. [22]
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introduced a novel model which not only extracts the statistical correlations between data
sets but also decomposes the data into shared and data set-specific components. While the
model seems more complex due to having more unknown latent variables, it has advantage
of diagonal noise that reduces the risk of over-fitting.

All the aforementioned methods are based on complex nature such as estimation of Eigen
vectors, optimization and so on. Besides, if we consider the large number of images per
person, it will also a space consuming. Therefore, our motive is to present a simple and
effective subspace learning method.

3 The proposed learning space

Following the motivational exertion of Brendan [12], we tried a different way of subspace
or dimension reduction solution based on a method Akin. Akin is called as someone to
whom you are comparable by similarity or blood, for e.g. brothers are a case of people who
are akin. Earlier, Xin et al. [46] presented an exertion on kin relationships, where authors
depicted the family faces like son-father, son-mother, daughter-father, daughter mother, and
so on. In our case, Akin indicates a face which has the maximum analogous characteristics
in a group of face images of an individual. In Fig. 1, we show how Akin based graph can be
used to extract representative faces (the highlighted face images in the figure) from a gallery
of images. The representative face images are those images which scored the maximum
similar values. We recovered the representative images from each group of face images of an
individual in an iterative way. In other words, if we have 3 individuals as shown in Fig. 1, and
if each individual has 7 images i.e. a total of 21 images, then there will be 3 iterations. There
may be more than one representative images with similar score values from each group. To
generate a subspace for each group, we concatenates the representative face image(s). These
subspaces should be orthogonal or de-correlated because they are representative subspaces
from separate group of individuals. At the end, we merge up these subspaces to produce an
orthogonal space, which follows a Gaussian distribution. Figure 2 shows a brief overview
of our proposed subspace learning system.

Fig. 1 Motivational graph of our proposed system
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Fig. 2 The proposed system overview

The proposed idea is articulated through an algorithm called akin based orthogonal space
(AOS) with two motives: (i) to create a list of representative face subspaces (RFS) in order
to choose the representative face(s) from each group of face images of individuals, and (ii)
to make non-orthogonal ‘RFS’ subspaces to an orthogonal space.

For a clear illustration of how to pull out representative face image(s) from each group,
and how to orthogonalize the representative subspaces, we present a detailed procedure in
Algorithm 1 and discuss step-wise afterwards.

Input and Output: A set of input gallery images divided into L groups. Each group is
consisting of k images of an individual. Initially, it is necessary to provide the number
of representative images R as user choice. Finally, the algorithm will give an orthogonal
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space S which is a union of L number of mutually orthogonal subspaces RP1
o, RP

2
o, ...,

RPL
o .

Distance based Matrix Creation (Step 2): Each group of k images is stored in a data
matrix XL where each column representing a face image vector. In an iterative way, the
algorithm will run for L groups as g←1 to L.

The input distance based matrix of the k images is structured as follows: each face image
is taken as data point over row axis and as akin point over column axis, as shown in Fig. 3.
The distance matrix gets as input a gathering of real valued Euclidean distances between
data points xi and akin points xj . Hence, each data point xi or akin point xj is represented by
a face image vector. The Euclidean norm, denoted as ||.||, estimates a relationship between
face vector pairs xi and xj as

Dis(i, j) = EuclideanDistance||xi − xj || (1)

where Dis(i, j) indicates how much appropriate the akin point j is suited for data point i .
Here, i and j are the row and column dimensions of k images of an individual at a time. A
linear normalization of an image based distance matrix is executed to eliminate the effect
of certain gross influences, in a way of comparing corresponding distance values between
image pairs or data and akin point pairs, as in (2).

DSim(i, j) = 1 − Dis(i, j) − minDis(:, :)
maxDis(:, :) − minDis(:, :) (2)

notation ‘:,:’ indicates all data values of corresponding distance matrix rows and columns.
The ‘1 minus’ indicates of converting the distance to similarity measure i.e. maximum
similarity towards 1 and minimum similarity towards 0.

Estimation of Akinity (Step 3): The proposed algorithm mainly conceptualized on two
theoretical aspects: Akinity [31, 32] and Liability which are attempted to establish, here.
As mentioned earlier, Akin indicates a most appropriate similar face which has maximum
analogous characteristics in a group of face images of an individual. While penetrating a
candidate akin point for a data point, we taking into account other candidate akin points
as competitor - which has termed as ‘Akinity’. Figure 4 shows the Akinity a(i, j) sent from
data point i to candidate akin point j (black points) i.e. akin point j is to serve as the most
similar candidate for data point i, while others candidate akin points j′ (green points) will
compete for data point i. The Akinity a(i, j) is set to the input similarity DSim(i, j) between
data point i and akin point j. While measuring similarity between a candidate akin point
for a data point, the rest of candidate akin points will consider as competitors for holding
that data point. So the question is, how much superior the score of akin point than other

Fig. 3 Distance based matrix representation
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Fig. 4 Akinity a(i,j) Graph for data point i to akin point j

competing akin points? To answer this, we have subtracted the largest of the similarities
among competing candidate akin points j′ as

a(i, j) = DSim(i, j) − max
j ′ �=(i,j)

DSim(i, j ′) if i �= j (3)

a(j, j) = max
j ′ �=j

a(j, j ′) if i=j (4)

For i = j, the Akinity a( j, j) is set to maximum of akinity values from all the estimated
values for i �= j defined as (4). That means, how appropriate it would be for data point i is
chosen as an akin itself.

Since the akinity is estimated among a group of faces of same person, in some circum-
stances the values will be replicate, called oscillation of numerical values. It is important
that they should be damped to avoid numerical oscillation. Each updated damped akinity
value is set to λ times its previous value plus (1 − λ) times its current akinity value

a(i, j) = λ × a(i, j − 1) + (1 − λ) × a(i, j) if j �= 1 (5)

In our case, the damping factor (λ) value is 0.5. Then, a linear normalization has been
performed. The idea behind akinity normalization is to bring the values into a range of 0
and 1, defined as (6).

a(i, j) = a(i, j) − min a(:, :)
max a(:, :) − min a(:, :) (6)

where notation ‘:,:’ indicates all data values of corresponding akinity matrix rows and
columns.

Estimation of Liability (Step 4): On the other hand, Liability indicates howmuch a cho-
sen point is answerable. Figure 5 shows the liability l(i, j) sent from candidate akin point j
to data point i. The earlier concept Akinity is concentrated on a data point at a time where
the akin points are rival for occupancy to rein that data point. Through akinity when a
akin point is decided for a data point, liability update the fact that data point i pick can-
didate j as the most appropriate akin point which has been decided by other supporting
data points. It is set as the average sum of the akinity values received by candidate akin
point j from other supporting data points i′

l(i, j) = 1

k − 1

∑

i′ �=(i,j)

a(i′, j) if i �= j (7)

l(j, j) = max
i′ �=i

l(i′, j) if i= j (8)
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Fig. 5 Liability l(i,j) Graph for akin point j to data point i

Like akinity values, the liability values are damped as defined (9) and finally normalized.

l(i, j) = λ × l(i − 1, j) + (1 − λ) × l(i, j) if i �= 1 (9)

Generate Representative Face Subspaces (Steps 5-8): To make a choice the represen-
tative images, the akinity and liability values has been combined for diagonal positions
and chosen the higher values in a variable RPScore.

c(i, j) = a(i, j) + l(i, j) if i = j (10)

We can pick more than one i.e. R number of representative faces based on the next
higher values of RPScore. Based on index of higher RPScore values and correspond-
ing image vectors from data matrix Xg , the representative subspace or matrix will be
generated (Step 8). After complete execution of Step 1 i.e. L number of iterations for L
number of separate group of individuals, we can recover a list of representative face sub-
spaces RP 1 = [x1

1 , x
1
2 , ..., x

1
R] ∈ �p×R,RP 2 = [x2

1 , x
2
2 , ..., x

2
R] ∈ �p×R, ..., RP L =

[xL
1 , xL

2 , ..., xL
R ] ∈ �p×R .

Generate an Orthogonal Space (Steps 9-10): Since the representative face subspaces
are matrices from L number of separate group of individuals, it should be de-correlated or
orthogonal from each other. For clear illustration of how to orthogonalize the subspaces,
we present the detailed procedure in these steps with the help of Gram-Schmidt process
[14]. The visual stages have been shown in Fig. 6

The basis subspace matrix (RP 1
o ) will be deducted from the summation value of rela-

tionship with previous subspace matrices i.e. inner products between current subspace and
previously formed orthogonal subspaces as defined in (11). The inner product denotes by

Fig. 6 Representative subspaces based orthogonal space creation
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trace between two subspaces as tr((RP j )T × RP i
o). The tr operator projects the subspace

RP j onto the line spanned by subspace RP i
o to extract the association value between these

two subspaces.Then the resultant traced scalar value will be normalized by ||RP j ||, and
finally project onto RP j .

RP i
o = RP i

o −
i−1∑

j=1

tr((RP j )T × RP i
o)

||RP j || RP j ; if i = 2 to L (11)

RP i
o = RP i

o

||RP i
o || (12)

The sequences RP i
o are required system of orthogonal subspaces, and the subspaces RP i

o

form an orthonormal set through normalizing i.e. dividing the subspaces itself by norm
as defined in (12). At last, we generated a space S by concatenate these L number of
representative subspaces, which has been termed as Akin based Orthogonal Space (AOS).

Proposition 1 Linear orthonormal transformation of non-orthonormal representative sub-
spaces RP L ∈ �p×R generate a symmetric matrix M ∈ EL×L such that each element of
M have densities of Gaussian.

Proof According to AOS process, the orthonormal transformation of a representative sub-
spaces RP L linearly form a basis space S ∈ �p×N where S consists of a set of L

uncorrelated subspaces RP 1
o , RP 2

o , ..., RP L
o such that tr((RP i

o)T ×RP
j
o ) = 0 if i �= j and

tr((RP i
o)T × RP

j
o ) = 0 if i = j .

In Gaussian Orthogonal Ensemble (GOE), distributed[M, GaussianOrthogonal

MatrixDistribution(σ, L)] can be used to assert that the distribution of a random squared
symmetric matrices M = mij have probability densities proportional to a Gaussian distribu-
tion (0, σ ) [44]. It is evidence from the discussion that each element (mij ) symmetric matrix
M follows a distribution of Gaussian where ensuing of mij is coming from the product of

two orthonormal basis subspaces RP i
o and RP

j
o of S.

3.1 Space projection to feature extraction

In feature extraction, the aim of the generated space, namely, AOS is based on the theory
that the high-dimensionally observed faces will be lived in a low-dimensional space. But,
our method of generating projection space is a making over the susceptible power of non-
Gaussian, as argued in the Proposition 1. In order to extract the face features, faces data are
needed to be projected into the generated space S. Earlier, it was also necessary that faces
data should follow a standard form of signal close to Gaussian distribution. To standardize
the faces data, we have utilized the concept of Z-Score. Z-scores are linearly transformed
data values having a mean of zero and standard deviation of 1 that follow a standard Gaus-
sian distribution. The Z-score is defined on a data matrix X of dimension p × n as in (13),
where X contains n number of face column vectors and each column is a face vector of p

number of pixels. The notation ‘1:p,:’ indicates all data values of corresponding face data
matrix rows 1 to p and columns.

X̄ = X(1 : p, :) − μ(1 : p)

σ(1 : p)
(13)
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i.e. subtracting the mean

μ(1 : p) =
n∑

j=1

Xpj

n
(14)

of face data matrixX from each pixel intensities, and then dividing by the standard deviation

σ(1 : p) =
√√√√

n∑

j=1

(Xpj − μ(1 : p))2

n − 1
(15)

Therefore, the extraction of face features will be followed as

X̃ = ST X̄ (16)

3.2 Analysis of representative face(s)

Representative face image(s) of one individual should be similar to all the face images of
that person, but it should be dissimilar to the representative face image(s) of other indi-
viduals. The Fig. 7 shows ten non-orthogonal representative face images as well as their
corresponding orthogonal representative face images from ORL [36] dataset. The orthog-
onal version of representative faces dramatically alters the appearance of the images while
preserving their texture information. The altered version decorrelates faces from each other
because they represent separate group of individuals.

To illustrate the benefits of representative (RP) score, we adopt the concept of best fit-
ted regression line between two feature points. In this regard, fourteen face images of two
persons are randomly selected. After linear projection of these faces on AOS, we carried
out two representative points as features: one RP point in x-axis and second RP point in y-
axis. Then, we drew the least square fitting line between these RP points which defines the
residual for the ith RP image as the error associated with that image. Figure 8 presents RP
images arranged in decreasing order of RP scores, which also depicts the error associated
with each RP image. We have noticed that the higher the RP score has lower is the error rate
except in RP image-2 in Fig. 8a.

Fig. 7 (top) Ten representative face images of ten individual groups from the ORL Database and (bottom)
corresponding orthogonal representative face images
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Fig. 8 a Residual Error estimation of first individual b Residual Error estimation of second individual from
ORL Database

3.3 Distribution of AOS space

In literature, the orthonormal vector space is used to Gaussianize data, but there is no article
that claims that the vector space itself is a Gaussian distribution. So, how has the orthonor-
mal space S Gaussian distribution? In order to better display the influence of learned space
i.e. AOS on distribution conception and a testimony of previously mentioned Proposition,
we present a statistical test called Quantile-Quantile (Q-Q) plot [45]. The Q-Q plot is just
a graphical tool to help us assess if a set of data plausibly came from some theoretical dis-
tribution such as Gaussian. If we run a statistical analysis assuming our space matrix is
normally distributed, we can use standard normal Q-Q plot to check that assumption. A Q-
Q plot is a scatter plot created by plotting two sets of quantiles against one another. If both
sets of quantiles came from the same distribution, we would see the points forming a line
that is roughly straight.

We have conducted an analysis from ORL and YALE [4] databases. From the datasets,
the AOS space matrices are generated by combining number of representative face images
(R = 1) of 30 individuals from ORL and 15 individuals from YALE. In above segments of
Fig. 9a or b, the curve indicates density of a normal distribution and that histogram area
of original space i.e. space without orthogonal between representative images is not fitted
properly to normal curve. It becomes clearer when we plot out the Q-Q of original sample
data vs. standard normal. From the points of both sample data and standard normal, we see
that the points are not forming a straight line. In below segments of Fig. 9a or b, we have
seen the probability densities of AOS data values that histogram area is almost laid down
with classic symmetrical bell curve standard normal distribution and corresponding Q-Q
plot also showing that the points of AOS data and standard normal forming a line that’s
roughly straight. Therefore, the AOS can transfer the original space to a signal close as
Gaussian distribution that will facilitate to reduce the influence of grosses like variations in
non-Gaussian or arbitrary distribution due to noises, lighting, and facial expressions.

4 The fusion approach between AOS learned features and custom VGG
trained features

The accomplishment of deep neural networks is attributed to their ability to learn rich
image representations, but they rely on estimating millions of parameters as well as require
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Fig. 9 A sample of distribution of the original space matrix and its AOS space matrix

a very bulk of images. In our case, we have very less amount of face data available
when compared to the requirements of convolutional neural network (CNN). An exten-
sively used alternative is to fine-tune the CNNs, which have been pre-trained using large
amount of image datasets (e.g. ImageNet). The well-known CNN architectures in literature
are VGG, ResNet, AlexNet and so on. One of the first CNN networks to push classifi-
cation accuracy is AlexNet. It is composed of only 5 convolutional layers followed by 3
fully connected layers which is a smaller network when comapred to VGG16 network.
These small networks sometimes cannot represent and explore face images in a concrete
way. The VGG16, on the otherhand, makes improvement over AlexNet by replacing large
kernel sized filters with multiple 3x3 kernel sized filters one after another. These mul-
tiple stacked smaller size kernel along multiple non-linear layers increases the depth of
the network, which enables it to learn more complex and concrete features. The training
with deeper networks, for example in ResNet consists of 152 layers performing optimiza-
tion on huge parameter space and therefore naively adding the layers leading to higher
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training error. Hence, we are motivated to choose VGG16 with moderate number of lay-
ers and get satisfactory accuracy. However, our trail experiments show that only the use
of pre-trained architectures with fine-tuning cannot provide satisfactory performance in
small face datasets. To address this problem, we propose a fusion approach based on AOS
features and a custom VGG features, as shown in Fig. 10. The AOS and custom VGG
fused features are to be used together with fine tuning to further boost the face recogni-
tion performance. Furthermore, the custom VGG features also improve the performance of
our proposed AOS features to a very great degree, as shown in the comparative study in
Tables 3 or in 4.

In custom VGG, we removed the last Dense classification Softmax layer outputting class
scores, and modified the fully connected (FC) layers according to our problem domain, and
used the rest of pre-trained model as a fixed feature extractor. In addition, the number of
output feature points of the last FC layer has been changed according to the number of
individual persons (classes) as is present in our face datasets. To fuse the extracted features
from both i.e. AOS (fAOS) and custom VGG (fVGG) features, we adopted the following
weighted sum rule:

f = α × f AOS + β × f V GG (17)

where α and β indicate weights for AOS feature values and VGG feature values, respec-
tively. In our case, α=0.4 and β=0.6. The resulting fused feature values can be used for
subsequent classification.

Fig. 10 Framework of the proposed fusion approach
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5 Experimental results and performance evaluation

In this section, the proposed learning method AOS and deep features fusion approach are
tested, and compared with other subspace learning methods using five visual face databases.
The IRIS1 and USTC-NVIE [39, 40] databases are used to evaluate the performance of pro-
posed method over facial expressions by varying the number of representative (RP) face
images. The illumination dataset of the IRIS database is also used to show the influence
of our method over lighting variations. The ORL, YALE and FRGC databases are evalu-
ated to compare the proposed methods with those relevant subspace learning methods. For
comparative study, we only consider ORL, YALE and FRGC databases because most of the
recent articles on this domain are basically made on these databases. Since we initially esti-
mate the pair wise distance between face images in the AOS algorithm, transforming both
images into one coordinate system is an essential issue. Therefore, we have used control
point registration process of all group images of an individual based on one base frontal
face image.

5.1 Experiments using the IRIS and USTC-NVIE visual face datasets

In these experiments, we mainly present the performance of AOS on the faces under
expression variability, and lighting variability to demonstrate the effectiveness of proposed
method. In this perspective, the face portion of each original image is manually cropped
and resized to an image of 50× 50 pixels. The random forest [17] classifier with 50 number
of trees is employed for this classification. Since the dimensionality is less than the sample
size, the random forest offers a more complex model, which might be better in certain cases.
Our parameter selection strategy is to allow the number of representative face images (RPs)
vary from 1 to 5. Tables 1 and 2 shows the recognition rates of AOS versus variations in RP
number.

Recognition of Faces under Expression Changes: For this experiment, we have col-
lected 3 different expressions from both IRIS and USTC database, namely, surprise,
laughing, and anger. In case of IRIS database, the expression dataset reposes of total
660 images from 20 individual persons and there are 33 different faces of each individ-
ual from 3 different expressions. To arrange the database according to our experimental
setup, we have first created 3 probe sets. For instance, in probe set 1, ‘surprise’ and
‘laughing’ of 20 individual expressive face images (20× 22=440 images) are separated
for training purpose and the rest of the images of ‘anger’ (20× 11=220 images) are kept
for testing purpose. Similarly, the details of other two probe sets are given in Table 1.
In case of USTC-NVIE database, a total of 270 expressive face images of 30 individual
persons consists of 9 different face images from 3 different expressions. The details of
arrangement of probe sets are also given in Table 1.

Table 1 lists the recognition rates across 15 tests for 5 representative points and 3 probe
sets. There are few points to be taken from the table. In case of IRIS database, the recog-
nition accuracies get superior in probe sets 1 and 3 i.e. when testing ‘anger’ and ‘laughing’
expressions against ‘surprise-laughing’ and ‘surprise-anger’ training expression sets respec-
tively. Almost contrary scenario has been seen in case of USTC-NVIE dataset i.e. probe

1http://www.cse.ohio-state.edu/otcbvsbench/Data/02/download.html.

http://www.cse.ohio-state.edu/otcbvsbench/Data/02/download.html
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Table 2 Recognition Results (Accuracy (%)) on IRIS database under variations with illumination

Prob sets IRIS database

Number of training Number of testing Number of Representative Face

images images Images (RPs)

1 2 3 4 5

Probe Lon, Ron, 2on Off 60.96 64.17 58.82 56.68 59.35

Set 1 (17× 33=561) (17×11=187)

Probe Set 2 Lon, Ron, Off 2on 81.81 86.63 87.70 84.49 87.16

(17×33=561) (17×11=187)

Probe Set 3 Lon, 2on, Off Ron 86.09 85.56 87.70 91.44 91.97

(17×33=561) (17×11=187)

Probe Set 4 Ron, 2on, Off Lon 84.49 81.28 85.02 82.35 82.35

(17×33=561) (17×11=187)

Probe Set 5 Lon, Ron 2on, Off 71.92 75.40 71.12 69.51 74.06

(17×22=374) (17×22=374)

Probe Set 6 Lon, 2on Ron, Off 66.04 73.26 69.51 74.06 69.78

(17×22=374) (17×22=374)

Probe Set 7 Lon, Off Ron, 2on 66.84 68.18 69.78 68.18 72.72

(17×22=374) (17×22=374)

Probe Set 8 Ron, 2on Lon, Off 65.77 67.11 63.63 70.05 66.04

(17×22=374) (17×22=374)

Probe Set 9 Ron, Off Lon, 2on 76.73 76.73 74.59 80.74 77.54

(17t imes22=374) (17×22=374)

Probe Set 10 2on, Off Lon, Ron 79.25 82.44 81.91 85.37 81.91

(17t imes22=374) (17×22=374)

set 2 giving better results than other two probe sets. With respect to the number representa-
tive face images, we have seen that RP=4, 5 are promising than other representative points.
Overall, the proposed learning space is showing highest recognition rate of 92.22% for IRIS
and 90.90% for USTC-NVIE.

Recognition of Faces under Illumination Changes: In this experiment, we consider the
IRIS illumination dataset since USTC-NVIE is available only for expressive face images.
The IRIS illumination dataset reposes of 748 images of 17 individual consisting of 44
different images from 4 illumination sets. These 4 illumination sets are left light on (Lon),
right light on (Ron), both light on (2on), and left & right light off (Off). From these
4 illumination sets, we have created 10 probe sets for training and testing purposes, as
shown in Table 2.

Table 2 lists the percentage of accuracies across 10 probe sets. Here, the probe set 3 i.e.
testing face features of right light on (Ron) alongside training face features of left light on
(Lon), both light on (2on), left & right light off (Off) gets more improvement. The lowest
accuracies are highlighted in probe set 1 when testing face features of left & right light
off (Off). A possible reason could be because the method is hard to recognize due to more
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dim faces. On the whole, a performance of highest 91.97% recognition was shown under
variations in lighting environment.

5.2 Experiments using the ORL, YALE and FRGC face databases

For ORL or AT&T database, we have considered a total of 270 face images from 27 subjects.
For some subjects, the images were taken at different times, varying the lighting, and facial
expressions (open / closed eyes, smiling / not smiling).

For Yale database, we have considered a total of 150 face images from 15 subjects.
There are 10 images per subject, one for each of the following facial expressions: normal,
center-light, left-light, right-light, happy, sad, sleepy, surprised, and wink.

The proposed method is also tested on the Face Recognition Grand Challenge (FRGC)
ver2.0 database [29], which consists of real facial images from uncontrolled conditions. We
made use of a subset of FRGC for experiments such as: for each selected subject, 10 images
are randomly selected for training and the rest are for testing. From the whole dataset, we
have considered the uncontrolled conditions of illumination, expression, and pose.

In this section, we compare the performance of face recognition system over two cate-
gories. First, the performance over several distances’ metrics will be evaluated. As we know,
our proposed system starts with a distance matrix where each element value is a result of
pair wise distance between two face images. Therefore, we consider a comparative assess-
ment among several distance metrics, namely, euclidean, city block, minkowski, cosine,
correlation, spearman, hamming, and jaccard etc. In order to alleviate the effect of the recog-
nition performance caused by the choice of the distance metric’s, we run the system over
ORL and YALE databases. The resultant performances have been shown in Fig. 11. In both
databases, we have seen that all the distance metrics are promising almost nearby perfor-
mances, although correlation metric screening somehow slightly more outerperforms over
all the representative (RP) points except RP-4 in case of ORL and RP-1 in case of YALE.
Consequently, the second comparative study is carried out based on correlation distance
metric.

To show the performance of proposed learning space and corresponding fusion approach
with custom VGG network, we also present a comparative revise with 10 popular face
recognition learning subspaces which are somehow relevant to our method. These are -
orthogonal subspace based learning methods PCA, CCIPCA, SVD, independent subspace
based learning methods ICA Architecture I, ICA Architecture II, PCA I, PCA II, graph

Fig. 11 Distance metric based comparative evaluation. Euclidean (Eucli.), CityBlock (Cityb.), Minkowski
(Minkws.), Cosine (Cos.), Correlation (Corr.), Spearman (Sprm.), Hamming (Ham.), Jaccard (Jacrd.)
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based orthogonal subspace learning methods OLGE, OLPP, and similarity metric based
learning subspace method CCA. In order to alleviate the effect on the face recognition
performance caused by the choice of principle components (PCs), independent components

Table 3 Average recognition results (accuracy (%)) on ORL, YALE and FRGC databases over random forest
and decision tree

Methods Random forest Decision tree

ORL YALE FRGC ORL YALE FRGC

Proposed Fusion (AOS + Custom VGG) 93.62 87.19 89.33 66 60 65.29

92.73 88.79 88.74 70.37 68 70.98

Proposed Method (AOS) 87.40 82.66 81.47 65.62 60 62.13

88.59 77.33 79.33 66.07 67.20 69.25

PCA 84 69.06 69.76 58.07 50.66 55.79

86.66 68.53 71.23 64.14 46.93 53.23

CCIPCA 81.18 73.86 73.08 58.22 54.40 60.22

79.70 67.20 69.28 62.37 54.13 59.71

SVD 84 70.93 71.25 57.62 50.66 51.23

82.66 73.06 71.66 64.14 46.93 49.21

ICA Architecture-I 68.44 46.93 51.39 55.25 34.40 41.89

72.44 43.73 50.79 54.22 36.80 41.08

ICA Architecture II 66.37 46.66 52.44 49.62 41.86 46.98

72.44 45.86 54.14 57.03 36.80 45.93

PCA I 88 78.66 79.65 52 44.26 61.91

89.33 77.33 80.06 56.29 51.20 68.97

PCA II 73.62 46.66 60.12 54.51 37.33 53.20

69.77 48.26 59.23 55.70 41.06 51.18

OLGE 87.40 72 73.22 66.66 54.66 59.21

78.51 72 71.76 61.48 56 58.81

OLPP 91.11 78.66 78.46 67.59 64 62.15

92.59 74.66 77.22 68.25 52 69.21

CCA 84.59 81.60 81.09 52.44 41.06 59.23

87.25 77.06 79.68 54.96 55.46 68.68

Italic text results represents second training phase, and normal text results represents first training phase
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(ICs), or representative (RPs) points, we run each system 5 times with a gap of 20 PCs/ICs
or 5 RPs (i.e. 1, 2, 3, 4, 5 RPs respectively, in our case) and then average them. There are
two phases of training samples. In the first phase, half of the images per person are used for
training and the remaining images are used for testing from the considered databases. In the
second phase, the training and testing datasets are exchanged.

Table 3 shows the average recognition rate on ORL, YALE and FRGC databases over
Random Forest (RF) and Decision Tree (DT) [30] classifiers. There are few main points
to be taken. In case of ORL dataset, the proposed method shows at least 3% and 7% more
accuracy in training phase 1 and phase 2, and at least 2% and 2% more in training phase
1 and phase 2 over RF and DT respectively. It is also noticed that the evaluation results of
DT has not performed well in comparison to RF. The reason may be due to the continuous
real-valued features which are not well suited for decision trees. Some exceptions are also
noticed. The performance of AOS is slightly lesser than PCA I and OLPP in terms of aver-
age recognition rate. A possible reason is that PCA I reducing the pixel redundancy among
different faces can enhance the robustness of PCA [43], and OLPP preserve local sparse
structure of data in the transformed domain as well. In case of YALE and FRGC datasets,
proposed method significantly outperforms than state-of-the-arts as well as their extended
versions using RF. In both datasets, the recognition accuracies behave approximately simi-
lar. The performances of PCA I and CCA are most competitive with our proposed method
than other state-of-the-arts. Classifying through DT, we analyse little improvement for
FRGC than YALE. As usual, PCA I and OLPP get competitive results. At the end, the
strategy to fuse AOS features and custom VGG features are analysed. The fusion approach
outperforms above all and greatly improves the proposed learning space by maximum 11%
of recognition rate.

The comparative studies on relevant methods with our proposed one depends on many
environment setups: (i) number of training and testing images (ii) resolution size of images

Table 4 Comparison of the recognition accuracies (%) on ORL and YALE Databases

Method ORL database YALE database

Proposed fusion approach 95.55 92

Proposed Method (AOS) 89.62 86.66

Lei Zhang et al. [49] m=2, n=16 75.56

– m=1, n=32 74.44

m=1, n=32 74.44

Jing Wang et al. [41] t=2 81.69 t=4 76.67

t=3 88.68 t=5 77.00

t=6 82.53

K.Papachristou et al. [28] p=10% 73.33 –

p=20% 85.00

p=30% 89.29

Yong Xu et al. [47] t=2 86.88 –

t=3 89.64

J. Liang et al. [24] – t=5 86.28

t=7 87.00

m, n is Block Size, t = Number of Images per Person to form the Training Set, p = % of Images per Person
for Training



Multimedia Tools and Applications

(iii) parameters of subspace techniques (iv) classification techniques (v) parameters of clas-
sification techniques and so on. For these reasons, we have presented a comparative study
with hands-on implementation on our experimental setup in Table 3. As well we present
another comparative study with direct imitative optimum recognition accuracy results of
referred papers as shown in Table 4. The study shows that AOS produces comparable
outcomes with other recent works, and, as usual, fusion approach outerperforms.

6 Conclusions

In this paper, we present an algorithm (AOS) with two key parts (i) part 1: representa-
tive face subspace (RFS) to choose the representative face(s) from a group of face images
of an individual, which in turn works as a dimension reduction (ii) part 2: generating an
orthogonal space by combining all non-orthogonal subspaces of part 1. This space follows
a distribution which is close to Gaussian. Later on, we proposed another approach i.e. fused
method with a custom VGG pre-train model. Classification experiments on both IRIS and
USTC-NVIE databases demonstrate that AOS could work better on face under expression
variants than lighting variety. The comparative studies of proposed learning space with other
relevant spaces over ORL, YALE, and FRGC databases show that proposed method per-
forms comparative to other state-of-the-art as well as topical methods. The fused results
also show that convolutional neural network features can greatly improve the face recogni-
tion performances. In future work, we will extend our proposed work and explore the other
possible grosses such as occlusion and pose variant problems. Full program is available
for the research community, contact email or website respectively: mkb.cse@gmail.com or
mrinalkantibhowmik@tripurauniv.in and www.mkbho-wmik.in.
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