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Abstract—Foreground segmentation of moving objects in 

adverse atmospheric conditions such as fog, rain, low light and 

dust is a challenging task in computer vision. The advantages of 

thermal infrared imaging at night time under adverse 

atmospheric conditions have been demonstrated, which are due 

to the long wavelength. However, existing state-of-the-art object 

detection techniques have not been useful in such scenarios. In 

this paper, we propose an improved background model that 

utilizes both thermal pixel intensity features and spatial video 

salient features. The proposed spatial video salient features are 

represented as an Akin-based per-pixel Boolean string over a 

local region block, and depend on the effect of neighbouring 

pixels on a centre pixel. The result of this Boolean procedure is 

referred to as the - ‘Akin-based Local Whitening Boolean Pattern 

(ALWBP),’ which differentiates foreground and background 

region accurately, even against a cluttered background. The 

background model is controlled via (i) the automatic adaptation 

of parameters such as the decision threshold RT and, learning 

parameter L, and (ii) the updating of background samples 

Bsample_int and,- Bsample_ALWBP to minimize (a) the effect of the 

background dynamics of outdoor scenes, and (b) the temperature 

polarity changes during the maiden appearance of a moving 

object in thermal frame sequences. The performance of this 

model is evaluated using nine existing standard segmentation 

performance metrics on our newly created -‘Tripura University 

Video Dataset at Night time (TU-VDN)’ and on the publicly 

available CDnet-2014 dataset. Our newly created weather-

degraded video dataset, namely, TU-VDN, consists of sixty video 

sequences that represent four atmospheric conditions, namely, 

low light, dust, rain, and fog. The results of a performance 

comparison with fourteen state-of-the-art detection techniques 

also demonstrate the high accuracy of the proposed technique.  

Index Terms— Atmosphere, aerosols, infrared, Akin, 

whitening, Boolean pattern, background model.   

I. INTRODUCTION 

utomatic night vision systems for the intelligent 

monitoring of moving objects assume that the input 
images have clear visibility under lane light; however, 

unfortunately, this assumption does not always hold [1]. The 

moving object monitoring performance depends closely on the 

enhanced quality of the images [2]. The quality of outdoor 

images is affected by several atmospheric conditions that alter 

the key characteristics (e.g., intensity, colour, polarization, and 

coherence) of the light source due to scattering by medium 

aerosols [3, 4]. Although computer vision systems perform 

well in indoor or outdoor environments during the day time, 

they encounter issues in outdoor atmosphere-affected 

environments. A satisfactory solution for night time is highly 

necessary because darkness causes major safety problems due 

to the collision of objects [5, 6]. The poor appearance of night 

images under subjective lighting and atmospheric conditions is 

a general problem for analysis in computer vision [7]. Due to 

adverse atmospheric conditions, the contrast of the images is 

degraded, which affects the visibility in such a scenario. The 

contrast degradation depends on the coefficient of light 
scattering through aerosols that are suspended in the 

atmosphere. In the last few decades, large datasets have been 

designed to meet the increasing demands for the development 

of new models for object detection under poor atmospheric 

conditions [8, 9]. However, there is still a lack of video 

datasets for moving object detection tasks that provide 

balanced coverage in atmosphere-degraded outdoor scenes, 

especially at night. 

Furthermore, for detecting moving objects, both a visual 

digital camera and a typical charge-coupled device (CCD) 

camera have the advantage of high resolution, which renders 

them more suitable for day time or night time use with a 
proper lighting setup. However, they are ineffective in 

environments with poor illumination or visibility due to 

atmospheric conditions because the appearance of objects in 

the captured images is not as clear as in images that are 

captured during under normal atmospheric conditions [1, 10]. 

Several related works have been conducted in such 

environments [11, 12, 13]. To address the limitations of visual 

and CCD cameras at night time, many studies have been 

conducted on methods that detect objects with near/far-

infrared (NIR/FIR) based cameras [14, 15, 16]. NIR cameras 

are robust against darkness, and however, they have a similar 

drawback to that faced by CCD cameras when the 
interferences are produced by vehicle headlights. In addition, 

the attenuation of visual, CCD, and NIR radiation that is 

produced through atmospheric aerosols is mostly due to their 

short wavelengths. In contrast, FIR cameras enable robust 

object detection regardless of the atmospheric conditions 

because as the spectrum wavelength increases, the effect of 

bad atmospheric conditions decreases [4]. However, there 

have many key issues that are related to object detection at 

night using an FIR camera, such as the following: (i) Flat 

Cluttered Background: The infrared radiation signal must 

travel from the target to the camera sensor among adverse 

atmospheric particles and is attenuated due to scattering; the 
loss of radiation along the way produces a blurred flat region. 

In addition, with the thermal sensors, because of large 

variations in the surface, which includes hot and cool objects 

such as buildings, vehicles, animals, humans, and light poles, 

the foreground objects and the background scene become 

indistinguishable; (ii) Temperature Polarity Changes: 

Thermal temperature adjustment during the maiden 

appearance of a moving object in a video sequence causes 

illumination-type effects in the background model from the 

current video frame and, therefore, yields false classifications. 

(iii) Background Dynamics: Outdoor scenes are affected by 
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movement in the background, e.g., due to waves or swaying 

tree leaves. 

The simplest object detection strategy is to segment moving 

regions of interest from the static background. The traditional 
background/foreground segmentation methods may be ill-

suited for overcoming outdoor environment issues such as 

dynamic behaviour in background (e.g., swaying trees) due to 

the key issues that are discussed above. The background-

model-based background segmentation methods are mostly 

pixel-level approaches that are either parametric [17] or non-

parametric [18, 19, 20]. In FIR imaging, the pixel-intensity-

based methods are not well suited for differentiating flat 

regions (with similar intensities between the foreground and 

background). It is necessary to use spatial features to analyse 

the texture [21, 22], especially when cluttered backgrounds are 

involved. 
The overall workflow of this paper is as follows. First, we 

briefly describe the night dataset that we created under various 

poor atmospheric conditions. The dataset was captured 

throughout the year using an FLIR thermal camera. The 

thermal video clips of outdoor night scenes are typically 

affected by bad atmospheric conditions, which result in 

blurred thermal sequences. To keep the complexity of the 

object-segmentation-based detection methods minimal, we 

used a deblurring pre-processing technique, namely, blind 

deconvolution, prior to segmentation [23]. In the background 

segmentation section, we propose an improved non-parametric 

background model that uses both local textures and thermal 
pixel intensities to discriminate between the foreground and 

background of flat cluttered regions. This novel non-

parametric approach also handles incorrect classifications that 

are caused by dynamic background and temperature polarity 

changes. To regularize the salt-and-pepper noise segmentation 

results, we use the Markov random field (MRF) graphical 

model. The noisy scattered segment pixels will connect 

geometrically according to their closeness in the MRF graph 

[24].  Then, the captured dataset is evaluated via our proposed 

method, and eleven state-of-the-art approaches. According to 

the results, our method outperforms these state-of-the-art 

methods in terms of three performance metrics – accuracy, F1-
score, and Matthews correlation coefficient (MCC). The 

proposed method is also evaluated on the changeDetection.net 

(CDnet) 2014 dataset [9]. 

The primary contributions of this paper are summarized as 

follows: (1) The paper describes in brief a comprehensive 

thermal video dataset of outdoor night scenes that are degraded 

by various adverse weather conditions, such as fog, dust, rain, 

and low light/poor illumination. This dataset is referred to as 

Tripura University Video Dataset at Night time (TU-VDN). 

Researchers can utilize this dataset for testing and ranking of 

existing and new algorithms for moving object detection; 

(Dataset is available for the research community, contact 

email or website respectively: 

mrinalkantibhowmik@tripurauniv.in or mkb.cse@gmail.com 

and www.mkbhowmik.in. (2) The paper proposes an improved 

video salient feature-based background model algorithm for 

detecting moving objects in night videos that were captured 

under adverse atmospheric conditions, in which thermal 

intensity information, in addition to spatial information, is 

fully taken into account. This algorithm can handle key 

challenging issues in thermal and outdoor adverse atmospheric 

environments, such as a flat cluttered background, a dynamic 

background, and thermal temperature polarity changes; (3) The 

proposed salient-feature-based moving object detection 

method is successfully applied to our adverse-atmospheric-

condition-based thermal night dataset, namely, TU-VDN, and 

the results demonstrate that it outperforms related state-of-the-

art methods in terms of detection performance; (4) The 

performance of the proposed method is also evaluated on 

change detection dataset - ‗CDNet 2014‘.    

The remainder of this paper is organized as follows. In the 

next section, the dataset-capturing design, conditions, and 

statistics are described. The problem is defined in Section III, 

and the related literature is surveyed in Section IV. In Section 
V, an improved background segmentation algorithm that uses 

spatial features and thermal pixel intensities is presented. In 

Section VI, a complete evaluation of the captured dataset is 

presented, followed by a discussion of the experimental results 

of the proposed method and a performance comparison with 

state-of-the-art approaches. Finally, in Section VII, we present 

the conclusions of this work and discuss future work.   

II. BRIEF DESCRIPTION OF THE TU-VDN DATASET 

Atmospheric aerosols reduce the visibility of the targets in a 

scene. This effect is especially debilitating at night. It directly 

affects the visibility through the aerosols and through vehicle 

headlamps and, street headlamps. At night, an object is 

typically visible when light from a source is reflected by the 

object back to the terminal camera sensors. To detect the 

presence of objects, terminal sensors use several 

electromagnetic (EM) spectra that range from the visible to the 

near-infrared to the far-infrared regions. For electro-optical 

(EO) sensors, when an EM wave propagates through the 

atmosphere, the primary factors that are responsible for 

extinction are absorption and scattering by atmospheric 

aerosols (for example, -rain, dust, and fog). Both factors 

degrade the performance of all sensors [4]. Due to these poor 

atmospheric/weather conditions, the contrast of a scene is 

degraded, which affects the visibility. This degradation 

depends on the aerosols is as follows: as the aerosol size 

decreases, the amount of scattering increases. The relative 

amount of atmospheric-aerosol-based EM radiation attenuates 

according to the ratio of the droplet radius to the wavelength.  

The atmosphere influences how far one can see through 

aerosols; the type of infrared camera that is used and the 

waveband in which the camera operates are also of 

importance. Because the particle size well exceeds the 

wavelength in the visible portion of the EM spectrum (0.4 to 

0.74 μm), attenuation by atmospheric aerosols is independent 

of the wavelength. As the wavelength increases, attenuation 

becomes less of an issue. Since wavelengths in the far-infrared 

region exceed those of other infrared wave bands, impact of 

particles on far-infrared waves is relatively insignificant. Far-

infrared waves provide the advantage of ‗seeing‘ not only at 

night but also through many atmospheric aerosols such as 

dust, fog, and rain. Fig. 1 shows, visual frames and the 

corresponding thermal sample frames that were captured at 

night under several atmospheric conditions. To characterize 

the textures in night time visual and night time thermal 

images, we have used entropy to measure the contents, where 

a higher entropy value in night time thermal frames indicates 

an image with adequate details of information in terms of 
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TABLE I: STATISTICS OF CREATED DATASET IN DIFFERENT ATMOSPHERIC CONDITIONS AT NIGHT TIME. 

Image Type 
Camera 

Model 

Camera 

Situation 
Background Condition 

Atmospheric Conditions 
Total Videos 

Low Light Dust Rain Fog 

Thermal 
FLIR 

T650sc 

Static 

Camera 

Flat Cluttered Background 12 7 3 6 28 

Dynamic Background 8 8 5 5 26 

Motion Camera 3 1 0 2 6 

Total Number of Videos 23 16 8 13 60 

Total Time Duration 44m46s 32m30s 16m19s 24m25s 1h58m 

 

    
(a) Entropy=5.08    (b) Entropy=7.28  (c) Entropy=6.82  (d) Entropy=7.78 

    
(e) Entropy=4.96    (f) Entropy=7.49  (g)  Entropy=6.86 (h) Entropy=7.73 

Fig. 1. Sample frames of the created dataset at night time (a), (b) a visual 

frame and the corresponding thermal frame, respectively, under low-light 

conditions; (c), (d) a visual frame and the corresponding thermal frame, 

respectively, under dust conditions; (e), (f) a visual frame and the 

corresponding thermal frame, respectively, under rain conditions; and (g), 

(h) a visual frame and the corresponding thermal  frame, respectively, 

under fog conditions. 

 
better quality. The level of distinguishable information of 

thermal frames is capable of revealing important hidden 

targets/objects than the night visual frames.  

 The most closely related datasets in the literature include 

thermal and visual-thermal frames since no dataset is available 

for purely night-based or poor atmospheric-condition-based 

scenarios such as dust, fog, and rain. Several of these datasets 

have been designed for evaluating moving object detection 

methods. Among these datasets, OSU-T [8], BU-TIV [25], 

ASL-TID [26], and LTIR [27] were captured using thermal 

sensors to detect and track objects, whereas the BU-TIV 

dataset is primarily designed for visual analysis tasks. These 

datasets only contain day-time video sequences, which have 

the challenges of cluttered background, occlusion, static and 

moving cameras, and object size variation, whereas the OSU-

T dataset includes various weather conditions and was 

captured using a low-resolution thermal camera to detect only 

pedestrians. Numerous datasets, such as LITIV [28], AIC-TV 

[29], OSU-CT [30], CVC-14 [31], KAIST [32], CDNet 2012 

[33], and CDNet 2014 [9], contain both colour and thermal 

video sequences; a few of them (LITIV, OSU-CT, and 

KAIST) fuse two modalities for robust detection. AIC-TV, 

CV-14, KAIST, and CDNet 2014 contain night video 

sequences. These datasets consist of various challenges, such 

as scale variations, lighting conditions, dynamic backgrounds, 

shadows, camera jitter, low frame rate, and turbulence. Very 

few datasets are considered adverse weather conditions; (i) 

OSU-T dataset is only considered for pedestrian detection in 

low resolution thermal imagery with only 10 number of 

sequences  with total 284 images, (ii) CDNet 2014 is 

considered only day time weather conditions such as snowfall 

under vehicle and pedestrian detection. The video sequences 

contains of only four clips using visual camera. These datasets 

are contains of very limited video sequences of adverse 

weather conditions. Thus, it is difficult to evaluate the 

robustness of object detection methods under atmospheric 

conditions, especially for night vision, because more than half 

of object-related accidents occur at night. In contrast, our 

motive is to providing a new dataset comprising of several 

adverse weather conditions with large number of video 

sequences compared to existing datasets. 

Therefore, we have designed a standard night-vision video 

dataset that is based on several atmospheric-weather-degraded 

conditions and covers many real-world scenarios. The 

considered atmospheric conditions are dust aerosols, fog 

aerosols, rain aerosols, and a low-light environment, under 

which we utilize a thermal camera. The dataset video 

recording conditions, dataset information, key features, and 

ground-truth annotation details are discussed in an article [34].  

The TU-VDN dataset provides a realistic diverse set of 

outdoor videos in night vision that were captured via a thermal 

modality. The current dataset consists of 60 video sequences 

that were captured under various atmospheric conditions; the 

key challenges of the video clips are listed in Table II. Each 

video clip is 2 minutes in duration and was recorded with an 

FLIR camera that was rigidly mounted with 90o alignments on 

a tripod stand by maintaining 200m to 2km distances from 
objects. In contrast, for a motion background, the video is 

captured by mounting the camera on a moving vehicle (20~30 

km/h) such that the objects, camera, and background are 

moving simultaneously. Overall statistics has listed in Table I.  

The key features of the designed dataset are as follows: (i) 

Each frame contains multiple types of moving objects, e.g., 

pedestrians, various types of vehicles, bicyclists, motorbikes, 

trains, and pets; (ii) The night video clips were captured under 

three outdoor atmospheric scenarios, namely, dust, rain, and 

fog, which produce flat regions in thermal scenes. In addition, 

the captured scenes are mostly in urban areas, which 

correspond to larger surface variations due to the presence of 
hot and cool objects such as houses, warehouses, office 

buildings, streets, and residents. Therefore, areas with varied 

background and adverse weather conditions produce thermal 

characteristics that lead to an increased flat cluttered region in 

the target area; (iii) A conventional challenge is encountered, 

namely, a dynamic background due to shaking trees, since the 

whole dataset was recorded in an outdoor environment; (iv) 

The key issue with the FIR camera is thermal temperature 

adjustment during the maiden appearance of a moving object 

in a video sequence, which causes illumination-type effects in 

the background model from the current video frame; (v) 

Motion-camera-based videos are captured by mounting the 
camera on a moving vehicle, where the camera and objects are 

moving and shaking simultaneously.          

III. PROBLEM DEFINITION 

The thermal infrared radiation signal must travel from the 

target to the camera detector sensor under adverse weather 

conditions or through atmospheric particles; therefore, more of 
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(a) (b)  

(c)  
Fig. 2. Outline of the salient-feature-based methodology over a flat cluttered background. (a) Background flat region. Each neighbouring pixel similarity 

pattern (Bs) is computed using the center pixel (marked as ‗x‘); (b) Foreground object flat region. The foreground string (F s) has 6/8 matches with the 

background similarity string (Bs), which could be categorized as background (incorrectly); (c) Foreground object flat region. The ALWBP descriptor (As) is 

computed using a randomly selected background sample (marked as ‗√‘) as a reference center pixel. The foreground string (As) has 3/8 matches with the 

background string (Bs), which is categorized as foreground (correctly). 

 

 

the signal can be lost along the way, which produces blurry 

flat regions. The thermal infrared camera produces an image 

according to the differences in the omitted thermal radiation 

between an object and the background. If the background 

emits the same amount of thermal radiation as objects, e.g., a 

cluttered background, the foreground and background regions 

will be indistinguishable. We investigated the performance of 

a perceptual discrimination salient-feature-based methodology 

on a flat cluttered background, as shown in Fig. 2. The sample 

frames are collected from our TU-VDN dataset with a flat 

cluttered background. The pixel values of the background 

region in Fig. 2(a) and of the foreground object region in Fig. 

2(b) are similar and vary smoothly; hence, the background and 

foreground true-positive pixel intensity values cannot be 

properly categorized, thereby resulting in incorrect 

interpretations. The main difficulty that is faced by well-

known feature descriptors [35, 36] on such flat cluttered 

regions is homogenous neighbouring pixel intensity values. In 

Fig. 2(a), we have investigated a background-based local flat 

region where each neighbouring pixel similarity pattern (Bs) is 

computed using the centre pixel, where is marked as ‗x‘. In 

Fig. 2(b), we have also investigated a foreground-object-based 

local flat region that is cluttered with the background region. 

The foreground-region-based similarity pattern (Fs) has 6 

matches out of 8 with the background-based similarity pattern 

(Bs), which could be categorized incorrectly as background. 

We have overcome over this challenge by increasing the 

robustness of existing local binary feature descriptors [35, 36], 

to obtain the ALWBP descriptor (details about this descriptor 

are presented in Section V). In Fig. 2(c), the ALWBP 

similarity pattern (As) is computed using a reference centre 

pixel, which is marked as ‗√‘ (details about the reference 

centre pixel are presented in Subsection A.2). As a result, the 

foreground similarity pattern (As) has 3 matches out of 8 with 

the background pattern (Bs), which is sufficiently 

discriminative to be correctly categorized as foreground.  

IV. RELATED WORK 

Over decades, the object detection methods that have been 

used for visual frames, have also been used for thermal 

frames. The main objective of these methods is to determine 

whether a specified pixel intensity value is a true positive or 

not. In change detection, multiple strategic approaches have 

been applied: density-based [17, 18], sample-consensus-based 

[19, 20, 37], spatial-feature-extraction-based [35, 36, 41, 42, 

43, 44], and fusion-based [21, 22] approaches. A prominent 

parametric method, namely, Gaussian mixture models 

(GMM), which was proposed by Stauffer et al. [17], typically 

performs adequately against shadowy multimodal background 

regions. Each background pixel is modeled using a mixture of 

Gaussian probability density functions via an iterative update 

rule. Another density-based estimation method, namely, kernel 

density estimation (KDE), which was introduced by Elgammal 

et al. [18], has been successfully applied in background 

segmentation. KDE is a non-parametric model that is used to 

estimate background probability density functions directly 

from local intensity observations. More flexible variations of 

GMM [38, 39] and KDE [40] have also been proposed over 

the years to improve the convergence rate.  

The background-sample-based strategy was introduced by 

Wang et al. [37]. The sample consensus (SACON) is defined 

at each pixel according to the N most recent pixel intensity 

samples. However, most methods of this type are unable to 

model long-term periodic events because their observations 

are based on a first-in, first-out strategy. To overcome this 

problem, a random observation replacement strategy was 

introduced in [19, 20] into the background models. In [20], 

Droogenbroeck et al. proposed another non-parametric 

method, namely, visual background extractor (ViBE), which 

utilizes a random approach to update background pixels and 

diffuse their current pixel values into neighbouring pixels. The 

main drawback of the ViBE method is that it follows a global 

fixed parameter strategy for model maintenance, which faces 

the problem of dynamic variations of real-world scenes. In this 

case, Hofmann et al. [19] proposed a feedback scheme, 

namely, pixel-based adaptive segmenter (PBAS), for 

monitoring the background dynamics at the pixel level 

through adaptive state variables. 

All these pixel-based models characterize pixels according 

to only colour intensity values. Colour intensities reflect the 

visual perception properties and often ignore part of the spatial 

information between adjacent pixels. Spatial-based feature 

extraction is beneficial in the typical cases where the 

foreground object texture is similar to the background‘s 

texture in terms of pixel intesities, especially in thermal video 

sequences. Heikkila et al. [35] were the first to explore the use 
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Fig. 3. Proposed system pipeline for background segmentation from thermal video sequences in adverse weather conditions. 

 

of the local binary pattern (LBP) descriptor to improve the 

spatial awareness in background modeling. Their method used 

the LBP feature to handle illumination variations by 

comparing local pixel intensities. Since then, many modified 

variations of LBP have been proposed in the literature. In 

2009, Heikkila et al. [41] introduced the centre symmetric 

LBP (CS-LBP) to further improve the computational 

efficiency. A new type of pattern features, namely, local 

binary similarity pattern (LBSP) features, were proposed by 

Bilodeau et al. [36], which are based on measure similarities 

instead of pixel comparisons and decrease the frequency of 

false classifications. Tan et al. [42] extended the binary pattern 

to a ternary pattern (LTP) by thresholding the pixel value 

differences to analyse the flat image regions. For detecting 

illumination changes at the pixel level, Liao et al. [43] 

presented a method, namely, scale-invariant LTP. A novel 

night time pedestrian detection method, namely, thermal-

pixel-intensity-histogram-of-oriented-gradients (TPIHOG), 

was proposed by Baek et al. [44] for investigating the thermal 

and pixel intensities using the HOG descriptor. 

In background modeling, numerous attempts have been 

made to combine the advantages of pixel-based and spatial-

based approaches in the generation of the background model 

to control both the change detection sensitivity and the 

dynamic background scenes in practice. One very well-known 

method in this category is the self-balanced sensitivity 

segmenter (SuBSENSE), which was proposed by St-Charles et 

al. [21], where LSBP [36] features and the PBAS [19] feed-

back model are combined to improve the spatiotemporal 

sensitivity. The authors also extend their work with a few 

general improvements in a new method: local binary similarity 

segmenter (LOBSTER) [22]. 

Several other well-known background subtraction methods 

for moving object detection are available in the literature. 

Maddalena et al. [45] presented a self-organizing artificial 

neural network for background subtraction (SOBS) for 

handling gradual illumination variations and camouflage. The 

Codebook methods of [46, 47] represent cluster observations 

as code words and store them in local dictionaries. The first 

eigenvalue-decomposition-based background model was 

proposed by Oliver et al. [48]. For more surveys on 

foreground segmentation, one can consult the many review 

papers [49, 50] that have been published.  

V. PROPOSED METHODOLOGY 

Most methods that are used for foreground object 

segmentation in video sequences that were captured by 

thermal or visual cameras are composed of three modules: 

maintenance of the background model, the current frame, and 

feature extraction. For thermal cameras, the incongruence 

between a background model and the current frame is not 

typically indicative for all types of objects. The only 

advantages of thermal cameras are that the captured images 

are not influenced by illumination and shadows and a 

pedestrian can be clearly distinguished as a foreground object 

due to its temperature absorbance. Other foreground objects, 

such as moving vehicles, that are comprised of several body 

components, such as wheels and headlights are visible, while 

the remaining components have similar texture to the as 

background. However, finding a satisfactory reference or 

background model for background subtraction is difficult 

when there are several real-time objects in thermal frames. 
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In this paper, we present a satisfactory background 

segmentation model that uses the novel Akin-based Local 

Whitening Boolean Pattern (ALWBP) salient features; a 

pipeline of the system is shown in Fig. 3. It handles flat 

cluttered regions in thermal frame sequences and increased 

false-negative ratios. The model is inspired by pixel-level [19] 

and spatiotemporal-level [21] methods because LBP [35] or 

LBSP [36] features are not robust to flat cluttered regions 

when neighbouring pixels are similar. The overall system 

pipeline of the proposed background segmentation method is 

the combination of an ALWBP feature descriptor and a 

background model generation. The pipeline has been 

described briefly as follows: 

Part 1: ALWBP Feature Descriptor 

Step (i): The video clips are converted in frame sequences and extracted the 

local blocks over each pixel position. 

Step (ii): We used well-known transformation whitening to mitigate the 

effect of similar correlation of homogeneous neighbouring pixel intensity 

values over the local block. A detail about this step is discussed in 

Subsection A.1. 

Step (iii): The center pixel of local block is replaced by a randomly chosen 

background sample as reference centre pixel. It is substantial discriminative 

power even in homogeneous neighbouring pixels. A detail about this step is 

discussed in Subsection A.2. 

Step (iv): The ALWBP descriptor is also described in Subsection A.2. 

Part 2: Background Model Generation 

Step (v): The part 2 collectively represents a generation of background 

model where both spatial-level and pixel-level features are represented as 

ALWBP Boolean patterns and thermal intensities respectively as inputs. It 

is consist of three sub steps: decision for segmentation, adaptation of 

parameters and updating the background samples. 

Decision for Segmentation: To match each thermal pixel intensity or 

ALWBP Boolean features with background integer or ALWBP features, we 

have used the taxicab geometry distance or XOR logical operation via a 

pixel wise dynamic threshold or Hamming distance threshold. A detail 

about these operations is discussed in Subsection B.1. 

Adaptation of Parameters: The adaptation of per-pixel dynamic threshold 

and learning parameter are also discussed in Subsection B.2 and B.4. For 

highly dynamic areas, the threshold value should be high to prevent 

incorrect classifications as foreground and be low for static areas. 

Updating the Background Samples: In Subsection B.3, the updating of 

background pixels is explained. Thermal background intensity changes like 

in the first appearance of an object, waves of water layers, and shaking trees 

are considered in this section.  

A. Video Saliency Feature 

Salient-feature-based object detection has recently 

increased in popularity in computer vision research [1, 4]. 

According to the types of input, there are two categories of 

saliency models, namely, static and dynamic. The static 

models take still images as input and the dynamic models 

operate on video sequences. In this paper, we aim at detecting 

salient moving object regions in video scenes. The invention 

of salient features in outdoor adverse atmospheric videos is a 

highly challenging problem due to the complications that are 

encountered under the loss of contrast and motion information. 

Therefore, we propose a novel salient features for each pixel, 
namely, the Akin based Local Whitening Boolean Pattern 

(ALWBP), which is presented in Algorithm 1 and described as 

follows: 

LBP [35] and LBSP [36] are well-performing and fast local 

feature descriptors, which are effective in analysing textures. 

Existing LBP and LSBP descriptors have the following 

disadvantages: (i) LBP only considers differences between the 

centre and each neighbouring pixels and (ii) LSBP considers 

the similarity between the centre and each neighbouring pixel, 

but not the effect of neighbouring pixels on the current 

similarity between the considered centre and neighbouring 

pixel. These methods are illumination invariant but not robust 

against low-frequency flat regions and smooth backgrounds or 

cluttered backgrounds, which has been discussed in the 
problem definition in Section III. These feature descriptors 

have difficulties on flat cluttered regions due to the 

homogeneous neighbouring pixel intensity values. Suppose we 

are extracting features on a thermal flat cluttered region block 
n nB   ( B consists of vectors    for 1 i ni nb    ) 

where the values of adjacent pixels are highly correlated. B  is 

a 3x3 block and each column is a set of three pixel values. 

Each 3x1 column vector is considered as feature vector 
ib . 

Therefore, block B contains of three feature samples. It is 

necessary to pre-process each 
ib  such that the correlation 

values are lower between adjacent pixels. A very well-known 

approach is to whiten each 
ib  in the direction of pixel 

variations that are perpendicular to each other, such that they 

will have lesser correlation with unit variance [51].  

A.1 Whitening Over a Local Block:  To more formally 

identify the directions of 1 2
, , ...,

n
b b b , we compute the matrix 

covariance, namely, ∑ , as follows: 

1 ( )( )                                          (1)

1

n
i i Tb b b b

n
i

   


                                                                                    

The eigenvalue decomposition (EVD) can be used to 

analyse the covariance matrix ∑of n n
B


   as follows: 

[ , ,..., ][ ( , ,..., )][ , ,..., ]            (2)1 2 1 2 1 2
Tu u u diag u u un n n    

where 1u is the principal vector, namely, the first eigenvector, 

of ∑; 2u  is the second eigenvector; and so on. These vectors 

are stacked to form an orthogonal matrix, which is denoted as 

U . Additionally, let , , ...,1 2 n   be the corresponding 

eigenvalues; they form a diagonal matrix, which is denoted as 

D . To make our input vectors 
i

b less correlated with each 

other, we reflect the original data as follows: 

                                                                (3)i Tb U birefl
                                                                                         

Thus, 
1 2

, , ...,
n

b b brefl refl refl will be less correlated and will 

satisfy one of our whitening properties. Since U  is an 

orthogonal matrix, it satisfies the property T T
UU U U I  . 

Therefore, the reflected vector
i

brefl back to original data 
i

b can 

be computed via i T i i i
Ub UU b Ib brefl    . 

The unit variance properties of input vectors 
i

b  are 

imposed by rescaling each reflected vector i

reflb  as follows: 

                                      (4)

ib
reflib

resl
i 




                                                                            

In the scaling step of Eq. (4), a small constant, namely,  , 

is added to the eigenvalues to make the feature vectors 

numerically stable. Altogether, the whitening is defined as 

follows: 
                                                                         (5)

         = U                                     using Eq.(4)
( )

B UB
w resl

ib
refl

diag i 





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Fig. 4. Akinity a(ix,y,Brc,ix-1,y-1,p0) from center pixel ix,y,Brc to candidate 

Akin pixel ix-1,y-1,p0. 

 

( , )
, , 1, 1, 0

              ( , ) min{ ( , )}...
, , 1, 1, , ,0

                                      if    sim( , )<T, , 1, 1, 0

a i i
x y Brc x y p

sim i i sim i i
x y Brc x y p x y Brc

i i

i ix y Brc x y p s

 

 
  

   
= ( , ) min{ ( , )}...  

, , 1, 1, , ,0

                                       if    sim( , ) T        (8)
, , 1, 1, 0

sim i i sim i i
x y Brc x y p x y Brc

i i

i i
x y Brc x y p s


  


 

 

1
2         = U diag(( + ) ) b

1
1 2         = UD                  {  B =[b ,b ,...,b ]}2

1
         = UD                                           using Eq. (3)2

1
2         = UD

i
i refl

nBrefl refl refl refl refl

T iU b

 


 






B                                                             (6)

T
U

 

The matrix Bw  of flat cluttered region block B is white, 

namely, its vectors 1 2
, , ...,

n
b b bw w w  are less co rrelated and of 

unit variance as shown in Proposition 1. The covariance of 

matrix Bw satisfies the following identity property: 

{ }                                                           (7)TE B B Iw w 
                                            

     

Proposition 1: If the whitened feature vectors 
1 2

{ , , ..., }
n

B b b bw w w w follow a joint Gaussian distribution, they 

are independent. 

Proof. Inspired by [52], we demonstrate that the feature vectors 
1 2

, , ...,
n

b b bw w w  of white matrix Bw
 about the pixels of a local flat 

region block follow a bivariate normal distribution. From the 

definition of a Gaussian orthogonal ensemble (GOE), the 

covariance of Bw  is identity I , namely, the matrix is real and 

symmetric, and the probability density [ , ]GOMD n  represents a 

Gaussian orthogonal matrix distribution (GOMD) with matrix 

dimension { }n n and scale parameter  . In other words, the 

entries of matrix I Iij are jointly proportional to a Gaussian 

with unit variance
2

1   and uncorrelated 0   [52]. 

If the joint distribution between any two feature vectors, 

such as 1
bw

 and 2
bw

, can be written as the product of non-

negative functions, feature vectors 1
bw

 and 2
bw

will be 

independent as follows: 
1 2

( , )

1 2 1 2 2 2( ) 2 ( )( ) ( )1 1 2 2
1 1

exp{- [ - + ]}
2 2 22 1 22(1 )2 11 2 1 2

1 2 1 2 2 2( ) 2 0 ( )( ) ( )1 1 2 2
1 1= exp{- [ - +

2 22 1 22(1 0 )2 1 01 2 1

f b bw w

b b b bw w w wb b b bw w w w

b bw wb b b bw w w w

b b b bw w w wb b b bw w w w

b bw wb b b bw w w

    

     

   

   

   




     



]}; set =0
2
2
w



1 2 2 2( ) ( )1 2
2 21 1

= exp{- [ + ]};       set =1, =11 22 1 1 2 2 21 1

1 1 1 2 2 2 2 2= exp{- [( 0) +( 0) ]};       set =0, =0
1 22 2

1 1 1 2 2 2= exp{- [( ) +( ) ]}
2 2

1 2 2 2( ) ( )
= exp{- }exp{- };       va

2 2

b bw wb bw w

b bw w

b bw w
b bw w

b bw w

b bw w

 

 

 




 

 

 

1lue of  is negligible
2

1 2
= f( )f( ) two independent functionsb bw w





 

Therefore, the relation between Proposition I and Eq. (7) is 

that the feature vectors from transformed white matrix Bw are 

less correlated as well as independent because only making of 

less correlation does not mean independence. 

A.2 ALWBP Descriptor:  We have obtained a local flat 

region of pixels via Eq. (6) that are less correlated, and used 

this region to generate Akin-based local Boolean pattern 
(ALWBP). The term Akin indicates a most appropriate similar 

neighbouring pixel to a centre reference pixel that has more 

analogous characteristics than the other neighbouring pixels. 

Unlike the traditional LBP [35] and LBSP [36] approaches, 

which calculates the difference and similarity, respectively, 

between two pixel values (a centre pixel and a neighbouring 

pixel), the ALWBP approach considers the effect of other 

neighbouring pixel values. This Akin-based concept is termed 

Akinity [53] and is described in Fig. 4. Brc is a background 

intensity sample value at ( ,x y ), which is the reference centre 

(rc) pixel. This differs from the approaches in [21, 22], where 

the reference centre pixel is imported from a previous frame 

intensity value. We have altered it because in flat regions, 

selecting the previous frame reference pixel as centre does not 

yield substantial discriminative power. The value of the 

reference centre from the background sample is selected 

randomly from N samples (regarding background samples, 

see Section V.B). While evaluating a ‗candidate Akin 

neighbouring pixel‘ for the ‗centre pixel‘, we consider other 

candidate Akin neighbouring pixels as competitors. Fig. 4 

shows the Akinity, namely, ( , ), , 1, 1, 0
a i ix y Brc x y p   

from centre 

pixel , ,ix y Brc  to a candidate Akin neighbouring pixel 

1, 1, 0
ix y p  : Akin neighbouring pixel 1, 1, 0

ix y p  serves as the 

most similar candidate for centre pixel , ,ix y Brc , while other 

candidate Akin neighbouring pixels i  will compete for centre 

pixel , ,ix y Brc . Via this approach, we can analyse the similarity 

between two pixels more intensively than between other 

neighbouring pixels. The Akinity ‗ a ‘ at location   

( ,, , 1, 1, 0
i ix y Brc x y p  ) can be calculated via the following 

formula:
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Algorithm 1 (ALWBP): Akin-based Local Whitening Boolean Pattern 

Generation 

Input: 

Output: 

A frame F, the energy (E) over frame F. 

A Boolean pattern string for each pixel in frame F. 

1. for x: length(F,1) 

1.1       for y: length(F,2) 

1.1.1             Brc = randomly select a background sample from N 

recent samples 

1.1.2             relative_tau = E*F(x,y) 

1.1.3             B = extract a 3x3 block at coordinate(x,y)  

1.1.4             Initialize a matrix of size B, a0 

1.1.5             Whiten the block B       // to reduce the correlation 

between adjacent pixels 

1.1.6              Bw(ic,ic) = Brc         // center is replaced by a 

background sample that is 

used as the reference center 

pixel 

1.1.7              Estimate Akinity ‗a‘ over this whitened block Bw as 

                     if sim(iBrc,ip)<Ts then 

1.1.7.1                           a(iBrc,ip) = sim(iBrc,ip)-min{ iBrc,i’p } 

1.1.8                      else 

1.1.8.1                           a(iBrc,ip)=sim(iBrc,ip)+min{ iBrc,i’p } 

1.1.9                      endif 

1.1.10              Dampen the Akinity values to avoid numerical 

oscillations via 

                      ap(iBrc,ip)= *a(iBrc,ip-1) + (1- )* a(iBrc,ip) 

1.1.11              if ap<relative_tau then 

1.1.11.1                   ALWBP(x,y) = T 

1.1.12              else 

1.1.12.1                   ALWBP(x,y) = F 

1.1.13               endif 

1.1.14        endfor 

1.1.15 endfor 

 

 

 
Fig. 5. The discriminative nature between ‗raw pixel values of background 

and foreground region‘ and ‗estimated pixel values of ALWBP descriptor‘ 

(Estimation process of ALWBP values are similar to LBP).  
 

( , )         if   ;   0 p 7

                       = F         Otherwise                                             (10)

_A rLW elative tauBP x y T a
p

   
 

 How much higher is the similarity score of a candidate Akin 

neighbouring pixel 
1, 1, 0

ix y p 
than those of the other 

competing candidate Akin neighbouring pixels i ? To answer 

this, we have subtracted the largest of the similarities among 

the competing candidate Akin neighbouring pixels i with 

centre pixel , ,ix y Brc . At this point, we impose a condition: if 

the similarity between , ,ix y Brc and 
1, 1, 0

ix y p 
is less than a 

similarity threshold, namely, Ts , (which is set to 0.2 in this 

paper), the value will be subtracted; otherwise it will be added. 

Hence, if there is a more correlated value even after the 

whitening process, the similarity will be increased, and if there 

is a slightly uncorrelated value between centre and an Akin 

neighbouring pixel, the similarity will be decreased. In a same 

manner, the Akinity will be estimated for remaining 

neighbouring pixels, namely, , , ..., 71 2p p p .  

Since the Akinity is estimated among a group of neighboring 

pixels with a centre point, in some circumstances, replicate 

values will be obtained, which is called oscillation of 

numerical values. It is important for them to be damped to 

avoid numerical oscillation. Each updated damped Akinity 

value is set to  times its previous value plus (1  ) times its 

current Akinity value, as follows: 

( , ) ( , ) (1 ) ( , ) ;  0<p 7    (9)
1

a i i a i i a i i
p Brc p Brc p Brc p

      


 In our case, the damping factor (  ) value is 0.5. Furthermore, 

we define a lower bound and an upper bound, 

namely,
lower upper

a a ap p p  , such that the Akinity values are 0 

and 1. Via this approach, we have tried to evaluate the 

discriminative nature, even in flat regions, which helped increase 
the number of true-positive values and decrease the number of 

false-negative values. 

Now, the ALWBP descriptor Boolean string rule is 

presented as  

where a p  corresponds to the estimated Akinity value of the pth 

neighbour of the pixel at ( ,x y ) in the current frame and 

relative_tau = E i
c

 is the new energy based threshold value 

estimate for the current centre pixel at ( ,x y ). To capture the 

micro-texture in a smooth region, the spatial two-dimensional 

dependence matrix, which is known as the grey-level co-

occurrence matrix ( G ), of thermal grey palette values is used 

with displacement vector ( , )d dx dy , where dx=1 and dy =1 

[64]. The feature that measures the randomness of grey-level 

distribution is the energy, namely, E , which is defined using 

the grey-level co-occurrence matrix as follows: 

2( ) [ , ]                                               (11)Energy E G x y

x y

                                                        

The ALWBP salient feature descriptor is calculated in 

Algorithm 1. An example of an ALWBP simplified theory-

based description is presented in Fig. 2 and a simulation result 
is presented in Fig. 5.                                                                

B. Generating the Background Model via ALWBP 

(BM ALWBP)  

To generate our non-parametric background model, we 

represent each background pixel using both spatial-level and 

pixel-level features, namely, ALWBP Boolean patterns and 

thermal intensities. To try to match each pixel from the current 

frame with background integer samples, we first compare the 
thermal pixel intensity values using the taxicab geometry to a 

pixel wise dynamic threshold RT
. Second, we compare the 

ALWBP Boolean patterns over 3x3 blocks on the current 

frame with background ALWBP samples via a Hamming 

distance threshold, which is denoted as HT
. Regardless of 

whether a pixel belongs to the background or foreground, both 

thermal intensities and ALWBP Boolean patterns are 

considered in our method, as in [21, 22]. The methods in [21, 

22] are typically not robust against flat cluttered backgrounds, 

whereas our method focuses on this issue, along with other 

background subtraction problems such as thermal intensity 
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       (a)                                                  (b) 

Fig. 7. Thermal intensity changes upon the first appearance of an object 

in (a) a thermal frame and (b) the next frame in which the object enters 

for the first time. 

 

 
Fig. 6. Higher background dynamics (dmin) require faster threshold 

increments in the decision threshold (RT) and the thresholds gradually 

decrease for in low background dynamic values. 

 

 

changes upon the first appearance of objects and dynamic 

backgrounds. 

B.1 Pixel decision via samples of thermal intensity and 

ALWBP: Inspired by [19, 20], we develop a random sample 
consensus framework for modelling both long-term and short-

term periodic events [21]. Each pixel intensity, namely, ( , )I x y , 

is modeled by an array of N  recently observed background 

intensity samples, namely,
_ intBsample

and ALWBP string 

samples, namely,
_Bsample ALWBP

. 

( , ) { ( , ), ( , ), ..., ( , ), ...,
_ int 1 2

1
                                                         ( , )}              (12)

B x y BInt x y BInt x y BInt x y
sample k

N
BInt x y

N






   

( , ) { ( , ), ( , ), ...,
_ 1 2

1
                             ( , ), ..., ( , )}  (13)

B x y BALWBP x y BALWBP x y
sample ALWBP

N
BALWBP x y BALWBP x y S

k N






 
 

For thermal scenes, N must be a small as possible to balance 

memory consumption and computational complexity (we set 

# 10N   in our case). Each of these samples is matched against 

its observation ( , )I x y  or ( , )ALWBP x y  at coordinate ( , )x y  on 

the current frame for classifying a pixel as foreground 

( ( , ) 1F x y  ) or background ( ( , ) 0F x y  ) as follows: 

( , ) 1    if {texicab(I(x,y),B (x,y))<R (x,y) 
_ int

      & XOR(ALWBP(x,y),B (x,y)) }<Threshold_ min

             = 0    otherwise                                                       

F x y
sample T

Hsample ALWBP T





                  (14)

In Eq. (14), ( , ) 1F x y   corresponds to a per-pixel output 

segmentation map; ( , )R x yT
is the per-pixel distance threshold 

at pixel ( ,x y ), which should be high for highly dynamic areas 

and low for static areas; HT
 is a fixed Hamming distance 

threshold (we set # 3HT  ); and for classification, 
minThreshold  is 

the minimum number of matches with background samples in 

both the thermal intensity and ALWBP pattern, which is a 

fixed global parameter (we set # 2minThreshold  ) that balances 

the computational complexity and noise resistance [19,20, 37]. 

B.2 Per-pixel adaptation of the distance threshold (RT): A 

dynamic distance threshold, namely, 
TR  is defined per-pixel at 

coordinates ( ,x y ). For highly dynamic areas, ( , )R x yT
should 

be high to prevent incorrect classifications as foreground and 

it should be low for static areas. In a video sequence, there can 

be regions with waving of a water layer or trees in the wind, 

which will provide higher background dynamics and result in 

incorrect classifications of foreground objects. In addition, 
there can be regions with small to no changes, which provide 

low dynamic value. Therefore, the background dynamics, 

namely, ( , )mind x y , must be estimated, as inspired by [19]. 

In addition to saving arrays of the N recently observed 

background thermal intensity samples and ALWBP samples in 

the background maintenance, as in Eq. (12) and (13), we 

create another array, namely, ( , )D x y of minimum-distance 

samples between the current thermal pixel intensity and the 

background intensity samples as follows: 

( , ) { ( , ), ( , ), ..., ( , ), ..., ( , )}          (15)
1 2

D x y D x y D x y D x y D x y
k N



( , ) min{ ( ( , ), ( , ))}                (16)
_ int

D x y texicab I x y B x y
k sample



 To measure the background dynamics at pixel coordinate 

( ,x y ), the average of these minimum distance samples is 

calculated as follows: 

1
( , ) ( , )                                                   (17)min

1

N
d x y D x yk

N k

 


                                              

The dynamic adaptation of distance threshold ( , )R x yT
 via 

this measurement of the background dynamics is expressed as 

follows: 

( , ) (1 ) ( , ) ( , )           (18)
min

R x y R R x y R d x y
T lr T lr

      

where Rlr
 is a fixed regulated controller rate for the distance 

threshold ( 0.02Rlr   in our case). In completely static regions 

or less dynamic background regions, namely, 0mind  , the 

value of ( , )R x yT
 will slowly decrease. In contrast, under 

increasing background dynamics, the distance threshold, 

namely, ( , )R x yT
, approaches the product value of 

( , )minR d x ylr  , which provides a robust, increasing threshold 

value. However, in dynamic regions, ( , )R x yT
 initially slightly 

decreases by a factor of ( 1 Rlr ) and subsequently rapidly 

increases by a factor of Rlr
 as the value of ( , )mind x y increases. 

In Fig. 6, the decision threshold RT
is plotted. 

B.3 Updating the Background Model: To account for 

changes in the background, such as thermal intensity changes 

upon the first appearance of an object in the frame (as shown 

in Fig. 7), a waving water layer, and shaking trees, updating 

the background pixels in the background model, 

namely, ,_ int _B Bsample sample ALWBP , is essential. 
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Fig. 8. Sequence of segmented frames, where the incorrectly segmented 

(marked by red circles) foreground pixels are gradually vanish in 

subsequent frames. 

 

Algorithm 2 (BM ALWBP): Background Model using Akin based Local 

Whitening Boolean Pattern 

Input: 

 

Output: 

Total number N of frame sequences Fi

 
for the generation of  

the corresponding background model 

Corresponding segmented  frame sequences Fi
 

1. for i : N number of frames 

2.       Initialization: 

       match0 

       k0 

       RTinitialize randomly 

       Linitialize randomly 

       Thresholdmin2 

3.        for x : length(Fi
,1) 

3.1              for y : length(Fi
,2) 

3.1.1                    while(k<=N) do 

3.1.1.1                             if [taxicab{I(x,y), BIntk(x,y)}<RT(x,y) &&… 

 {ALWBP(x,y) BALWBPk(x,y)}<HT(x,y)]  

3.1.1.1.1                                       match = match + 1 

3.1.1.2                            endif 

3.1.1.3                            k = k + 1 

3.1.2                    endwhile 

3.1.3                    if (match<Thresholdmin) then 

3.1.3.1                           F
i
(x,y) = 1 

3.1.4                     else 

3.1.4.1                            F
i
(x,y) = 0 

3.1.5                     endif 

3.1.6                     Adaptation of distance threshold RT(x,y) based on 

dynamic parameter 
min ( , )d x y  

3.1.7                     Adaptation of Learning parameter L(x,y) based on 

dynamic parameter 
min ( , )d x y and F

i
(x,y) 

3.2              endfor 

4.         endfor 

5. endfor 

 

 

We have updated our background model via a similar 

approach to that in [19]. A pixel at coordinate ( ,x y ) is 

updated to one of the background samples if and only if the 

pixel is categorized as background, namely, ( , ) 0F x y  . Hence, 

foreground pixels will be excluded from this update process. 

For a randomly selected index 1, 2, ...,k N , the corresponding 

background sample values, namely, ( , )BInt x yk
and ( , )ALWBP x yk

, 

are replaced by the current intensity value, namely, ( , )I x y , and 

ALWBP pattern, namely, ( , )ALWBP x y , respectively. At the 

same time, we also update a random sample that is selected 

from 8-neighbouring pixels: ( , ) ( ( , ))I x y N I x y   . The 

background model at this neighbouring pixel is replaced by its 

current intensity value, namely, ( , )I x y  , andpattern, 

namely, ( , )ALWBP x y  . Via this neighbouring pixel update 

process, wrongly classified foreground pixels are gradually 

incorporated into the background model, as shown in Fig. 8. 

B.4 Per-pixel adaptation of the learning parameter (L): 
Every pixel, whether foreground or background, that is 

incorporated into a background sample also depends upon the 

learning parameter, namely, ( , )L x y . A higher ( , )L x y  value 

indicates that the pixel at ( ,x y ) is more likely to be 

incorporated into the background model. Here, we omit the 

probability concepts for simplicity [19]. According to the 

adaptation of the learning parameter ( , )L x y , pixels those 

pixels that are wrongly classified as foreground will be 

merged into background pixels. This strategy is formulated in 
Eq. (19) as follows: 

( , ) ( , ) {(1 / ( , )) ( , ) ...
min

               (1 / ( , )) (1 ( , ))}                         (19)
min

L x y L x y L d x y F x y
lr

L d x y F x y
lr

    

  
 

where Llr
 is a learning rate ( Llr  = 0.02 in our case). The 

learning parameter of a pixel is decreases fast if the pixel 

belongs to the foreground, namely, if ( , ) 1F x y  , or a plus low 
dynamic background and slowly decreased in the case of a 

highly dynamic background. As a result, an incorrectly 

classified pixel will slowly be identified as background pixel. 

If a pixel belongs to the background, namely, if ( , ) 0F x y  , the 

second term in Eq. (19) (after ‗+‘) will increase the learning 

parameter value by / ( , )minL d x ylr . Hence, a pixel is assumed 

by default to belong to the background and the learning rate 

will increase based on the value of mind . A larger value of 

mind  will slowly increase the learning parameter value, 

namely, ( , )L x y , and small value of mind  will rapidly increase 

it. Y. Wu et. al.[62] also suggested an similar approach which 

uses a progressive model and depends on the pre-set enlarging 
factor. The smaller enlarging factor indicates lower enlarging 

speed and more training time, but tends to result in a 

promising performance in the end. The larger enlarging factor 

which argues pseudo labeled candidate set will increase 

rapidly, but as a result it may not be reliable enough to train a 

robust CNN model. In our approach, the Eq. (19) is computed 

dynamically in nature. The variable ( , )mind x y  is dependent on 

the background dynamics for each pixel location. 

Background or foreground segmentation using both the 

ALWBP feature and the thermal intensity is presented in 

Algorithm 2. In summary, our approach performs effectively 

on thermal frame sequences. We (i) evaluated the 

discriminative performance of the ALWBP descriptor in most 

flat regions and (ii) developed a robust learning background 

model that is based on ALWBP and thermal intensity features 

and accounts for variations of the thermal intensities and 

background dynamics based on the adaptation of two dynamic 

thresholding parameters: ( , )R x yT
  and ( , )L x y . 

VI. EXPERIMENTAL EVALUATIONS 

This section is divided into three parts. First, we evaluate 

the performance of our proposed method, namely, 

BM ALWBP under our night dataset, namely, TU-VDN , 

which consists of four atmospheric conditions, namely, low-

light, dust, rain, and fog, along with the key challenges of 

static and moving cameras and cluttered and dynamic 

backgrounds, which are scenarios that are typically 

encountered in practice. Second, a total of 14 background-

model-based moving object detection methods are compared 

with our proposed method on our TU-VDN dataset. These 

state-of-the-art object detection methods are Vibe [20], 
Subsense [21], LOBSTER [22], PAWCS [54], FST [55], 

PBAS [19], Multicue [56], ISBM [57], MTD [58], VuMeter 

[59], KDE [18], MoG_V2 [17], Eigenbackground [48], 

Codebook [47], MSCL-FL [60] and MBS [61]. Most of these 

methods have been implemented in BGSlibrary. Third, we 

also assess our proposed method using a widely popular 
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TABLE III: COMPARISON IN TERMS OF F1-SCORE, MCC, AND ACCURACY PERFORMANCE MEASURES OF 15 METHODS ON THE TU-VDN DATASET. COLOURS 

ARE USED TO INDICATE THE RANKINGS OF THE METHODS – GREEN FOR THE BEST-PERFORMING METHODS, BLUE FOR THE SECOND BEST-PERFORMING METHODS, 

AND RED FOR THE WORST METHODS. 

State-of-the-art 

Methods, Year 

Low Light Dust Rain Fog 

F1-

Score 
MCC Acc. 

F1-

Score 
MCC Acc. 

F1-

Score 
MCC Acc. 

F1-

Score 
MCC Acc. 

Proposed Method 0.6555 0.6658 0.9891 0.7002 0.6983 0.9763 0.6962 0.6832 0.9877 0.7451 0.7456 0.9960 

Vibe, 2011 0.5738 0.5954 0.9907 0.5565 0.5823 0.9740 0.7307 0.7379 0.9877 0.6844 0.7119 0.9921 

Subsense, 2015 0.4812 0.5091 0.9837 0.5405 0.5679 0.9722 0.6112 0.6171 0.9788 0.8204 0.8218 0.9969 

LOBSTER, 2014 0.5244 0.5413 0.9890 0.4967 0.5346 0.9688 0.5658 0.5949 0.9793 0.6649 0.6769 0.9943 

PAWCS, 2016 0.3155 0.3505 0.9870 0.2322 0.2872 0.9656 0.6628 0.6752 0.9875 0.5176 0.5559 0.9945 

FST, 2014 0.4061 0.4509 0.9523 0.2360 0.2564 0.7189 0.6760 0.6938 0.9892 0.5173 0.5659 0.9677 

PBAS, 2012 0.5668 0.5803 0.9901 0.4033 0.4311 0.9547 0.7035 0.6893 0.9823 0.6936 0.7086 0.9952 

Multicue, 2012 0.4961 0.5314 0.9798 0.6166 0.6345 0.9714 0.5511 0.5912 0.9717 0.5511 0.5913 0.9717 

ISBM, 2011 0.3594 0.4064 0.9654 0.2191 0.2443 0.7040 0.2773 0.3387 0.9312 0.4951 0.5456 0.9501 

MTD, 2010 0.4656 0.4927 0.9814 0.4709 0.4772 0.9729 0.4843 0.4948 0.9802 0.5561 0.5640 0.9928 

VuMeter, 2006 0.3336 0.3882 0.9862 0.2171 0.2578 0.9667 0.6225 0.6373 0.9814 0.3071 0.3698 0.6083 

KDE, 2000  0.3845 0.3996 0.9691 0.2689 0.2978 0.9453 0.6198 0.6315 0.9606 0.5332 0.5522 0.9938 

MoG_V2, 1999 0.3119 0.3486 0.9854 0.2208 0.2799 0.9673 0.3532 0.3963 0.9651 0.2117 0.2509 0.9928 

Eigenbackground, 2000 0.3695 0.4190 0.9673 0.3603 0.3996 0.9184 0.2120 0.1761 0.6499 0.3413 0.3734 0.9629 

Codebook, 2004 0.3093 0.3623 0.8848 0.2066 0.2245 0.6807 0.2736 0.3958 0.9021 0.2319 0.3299 0.9111 

 

TABLE II: RESULTS OF OUR METHOD ON THE TU-VDN DATASET. COLOURS ARE USED TO INDICATE KEY CHALLENGE METRIC VALUES – ORANGE FOR A 

CLUTTERED BACKGROUND, PURPLE FOR A DYNAMIC BACKGROUND, AND BLACK FOR CAMERA MOTION. 

Atmospheric 

Conditions 
Key Challenges 

Fall 

Out 

Miss 

Rate 

Specifi

city 
Acc. Precision Recall JI 

F1-

Score 
MCC 

Low Light 

Static 

Camera 

Flat Cluttered Background 0.0104 0.1838 0.9896 0.9844 0.6271 0.8162 0.5545 0.6963 0.7008 

Dynamic Background 0.0051 0.2309 0.9949 0.9937 0.6387 0.7691 0.6147 0.6979 0.7018 

Camera Motion 0.1022 0.3581 0.8978 0.8746 0.4518 0.6419 0.3464 0.5067 0.4662 

Dust 

Static 

Camera 

Flat Cluttered Background 0.0279 0.2296 0.9721 0.9600 0.6060 0.7704 0.4998 0.6530 0.6501 

Dynamic Background 0.0037 0.2648 0.9963 0.9926 0.7710 0.7352 0.6027 0.7473 0.7464 

Camera Motion 0.0885 0.5991 0.9115 0.8571 0.4653 0.52009 0.3374 0.4918 0.4306 

Rain 
Static 

Camera 

Flat Cluttered Background 0.0136 0.1485 0.9864 0.9843 0.4918 0.8515 0.4501 0.6122 0.6341 

Dynamic Background 0.0039 0.1545 0.9912 0.9911 0.5988 0.8433 0.5523 0.7003 0.7123 

Fog 

Static 

Camera 

Flat Cluttered Background 0.0036 0.2128 0.9964 0.9937 0.7007 0.7872 0.5741 0.7215 0.7294 

Dynamic Background 0.0013 0.1391 0.9987 0.9982 0.7268 0.8609 0.6417 0.7686 0.7797 

Camera Motion 0.2384 0.5891 0.7616 0.7732 0.4298 0.5119 0.3087 0.4896 0.4541 

 

 

change detection dataset: CDnet 2014 [9]. The CDnet 2014 

dataset contains total fifty three videos from eleven video 

categories with four to six videos sequences in each category, 

namely, bad weather, low frame rate, night videos, ptz camera, 
thermal, shadow, intermittent object motion, camera jitter, 

dynamic background, and baseline turbulence. The bad 

weather category consists of only four videos under several 

snow situations. In contrast, our TU-VDN dataset contains of 

total sixty night videos to explore several adverse weather 

conditions, namely, foggy, dusty, rainy, and low-light. With 

CDnet 2014 dataset, the evaluation is conducted on three 

selected categories, namely, Thermal, badWeather, and Night, 

because these categories are related to our dataset. The results 

are reported with respect to ten performance metrics, namely, 

recall, specificity, miss rate, fall out, precision, error rate, 

accuracy, jaccard index (JI), Fβ-score, and MCC. To better 
assess the overall performance and compare the performances 

among state-of-the-art methods, we considered the following 

metrics: accuracy, Fβ-score and MCC. 

A. Evaluation on the TU-VDN dataset 

To demonstrate our key contributions via the analysis of 

our dataset using the proposed technique, we present the 
performance evaluation in Tables II through eight in terms of 

segmentation evaluation metrics: fallout or FPR, miss rate or 

FNR, specificity, accuracy, precision, recall, JI, F1-score, and 

MCC. In Table III, we also present a comparative performance 

evaluation on the TU-VDN thermal night dataset. 

The complete results of our proposed method on the 

created dataset are listed in Table II. We evaluated the 

performance in overcoming the following key challenges: (i) 

flat cluttered background: The overall performance against a 
cluttered background under in foggy conditions is promising. 

The MCC scores are correlated with the F1-scores, and JI is 

not a reliable metric for our dataset. The same correlation is 

also observed between the specificity and accuracy metric 

values. The F1-score and MCC metric values are affected by 

the low precision value, whereas our proposed method‘s recall 

value is very high. Under rainy conditions, we realize the 

highest recall value because as the aerosol size increases (the 

radii of the rain droplets are on the order of microns), less 

scattering is observed. Therefore, there is less loss of contrast, 

which reduces the false-negative classification rate for salient 

objects areas [3]. The miss rates are satisfactory metrics; (ii) 
dynamic background: The dynamic background scenarios 

are well handled by our proposed method, as exemplified by 

the fall-out values, namely, the false-positive rates are very 

low. Therefore, the precision values are high and produce a 

balanced factor with recall values, which results in better F1-

score and MCC compared to a cluttered background. Our 

method well handles the foggy conditions, even under higher 

aerosol density; and (iii) camera motion: According to the 

segmentation results, camera motion poses the biggest 

challenge due to camera vibrations that occur in parallel with 

vibrations of the vehicle on which the camera is mounted. The 

state-of-the-art methods also fail to properly segment salient 
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Fig. 9. Typical segmentation results for several key challenges under various atmospheric conditions in our created night time dataset. Row (1) shows input 

frames, row (2) shows the ground truth, row (3) shows the BMUALWBP results, row (4) shows the ViBe results, row (5) shows the Subsense results, row (6) 

shows the LOBSTER results, row (7) shows the PAWCS results, row (8) shows the FST results, row (9) shows the PBAS results, row (10) shows the Multicue 

results, row (11) shows the ISBM results, row (12) shows the MTD results, row (13) shows the VuMeter results, row (14) shows the KDE results, row (15) 

shows the MoG_V2 results, row (16) shows the Eigenbackground results, and row (17) shows the Codebook results. 

 
object areas, as shown in Fig. 9. The fall-out and miss rate 

values are also very high. Thus, the camera-motion-based 

metric values are excluded from the estimation in the average 

performance comparisons in Table III. 

According to Table III, the proposed model is robust in 

comparison to relevant classical and recently proposed state-
of-the-art alternative methods. Under low-light conditions, our 

proposed method realizes an approximately 8% relative F1-

score and MCC improvement over the second best-performing 

method, namely, Vibe; Codebook and MoG_V2 yield the 

poorest results. In terms of accuracy, Vibe and Multicue 

outperform the proposed method. Under dusty conditions, our 

method exhibits satisfactory performance according to all 

metrics, with nearly 6% and 8% relative F1-score and MCC 

improvements over the second best-performing method, 

namely, Multicue, and 0.23% increased accuracy relative to 

Vibe. As usual, Codebook yields the poorest results. Under 

rainy conditions, Vibe and PBAS yield the most promising 
metric values. Our method exhibits the third best-performance 

and the Eigenbackground method performs the worst. Under 

foggy conditions, Subsense yields the best metric values, 

followed by our method, whereas the MoG_V2 method yields 

poor results. To provide a better visual understanding of the 

categorization results, typical segmentation results are shown 
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(a)                                                                                   (b)                                                                              (c) 

Fig. 10. Comparative analysis on the CDnet-2014 change detection dataset over three categories: (a) the Thermal sequence, (b) the badWeather sequence, and 

(c) the Night sequence. 

 in Fig. 9 under various atmospheric conditions, along with key 

challenges. 

 
B. Evaluation on the CDnet 2014 dataset  

Our TU-VDN dataset is related to a few categories from the 

CDnet 2014 dataset. These scenarios are highly complicated 

due to low camera resolution. We analysed these categories 

separately via our proposed method and compared the results 

with those of all existing well-known state-of-the-art 

background subtraction methods. In Fig. 10 (a, b, c), we 

present bar graphs of the MCC metric values with error rates 

that were obtained by processing the Thermal, badWeather, 

and Night categories in the CDnet2014 dataset using 

seventeen state-of-the-art approaches, including our proposed 
approach. In the thermal category, our method realizes the 

second-best MCC value of 0.5943 with a marginal MCC 

difference from Multicue of 0.6001 and the lowest error rate of 

0.0142. Whereas MBS and MSCL-FL performances set as 

third- and fourth-best methods with MCC values of 0.5921 

and 0.5843. The PBAS and Eigenbackground methods also 

yielded satisfactory results, whereas PAWCS yielded the 

poorest results. In the case of badWeather, the proposed 

method realizes the best MCC value of 0.6971 with a slide 

variation from PBAS of 0.6961 and PAWCS realizes the 

lowest error rate of 0.0095. MSCL-FL and PAWCS yield the 

third- and fourth-best results and MoG_V2 the poorest. Last, 
on the most complicated night visual camera sequence, 

Subsense and MSCL-FL yields a promising MCC values, and 

MBS and our proposed method realizes the lowest error rates 

respectively. The remaining methods exhibit very poor 

performances. Among these three categories, the performance 

on the badWeather scenarios is superior to those on the 

Thermal and Night sequences. 

VII. CONCLUSION 

We have described briefly our newly created night video 

dataset, namely, TU-VDN, for moving object detection in 

thermal infrared images. The dataset consists of degraded 

atmospheric night outdoor scenes under low-light, dusty, 

rainy, and foggy conditions. We also presented a video salient-

feature-based background segmentation technique that uses 

both spatial features and thermal intensity for the robust 

investigation of thermal frames. We summarize the findings 

regarding this proposed technique as follows: (a) it handles 

various key challenges in thermal outdoor scenes, such as 

dynamic background, flat cluttered background, and thermal 

intensity adjustment during the maiden appearance of a 

moving object in the video sequence; (b) in terms of accuracy, 

F1-score, and MCC, the results of the comparative 

experiments on the TU-VDN dataset has demonstrated the 

superior performance of our proposed method; (c) the results 

of our analysis on the CDnet-2014 dataset over the night, 

thermal, and badWeather category sequences have also 

demonstrated the superior performance of the approach in 

terms of MCC value and error rate. 
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